o
    n~be                     @   s  d dl Z d dlmZmZ d dlmZmZmZmZm	Z	m
Z
mZmZ ddlmZ dZe jdkr1eded	eZd	ed
ZeedrDeded dkrcd dlmZmZmZmZ G dd deZdd Zn
d dlmZ dd ZG dd deZe ZG dd deZ dS )    N)tobytesis_native_int)backendload_libget_raw_bufferget_c_stringnull_pointercreate_string_bufferc_ulongc_size_t   )IntegerBasea{  typedef unsigned long UNIX_ULONG;
        typedef struct { int a; int b; void *c; } MPZ;
        typedef MPZ mpz_t[1];
        typedef UNIX_ULONG mp_bitcnt_t;

        void __gmpz_init (mpz_t x);
        void __gmpz_init_set (mpz_t rop, const mpz_t op);
        void __gmpz_init_set_ui (mpz_t rop, UNIX_ULONG op);
        void mpz_clear (mpz_t x);

        UNIX_ULONG __gmpz_get_ui (const mpz_t op);
        void __gmpz_set (mpz_t rop, const mpz_t op);
        void __gmpz_set_ui (mpz_t rop, UNIX_ULONG op);
        void __gmpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_add_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_sub_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_addmul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_submul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_import (mpz_t rop, size_t count, int order, size_t size,
                            int endian, size_t nails, const void *op);
        void * __gmpz_export (void *rop, size_t *countp, int order,
                              size_t size,
                              int endian, size_t nails, const mpz_t op);
        size_t __gmpz_sizeinbase (const mpz_t op, int base);
        void __gmpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_mul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        int __gmpz_cmp (const mpz_t op1, const mpz_t op2);
        void __gmpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const
                          mpz_t mod);
        void __gmpz_powm_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp,
                             const mpz_t mod);
        void __gmpz_pow_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp);
        void __gmpz_sqrt(mpz_t rop, const mpz_t op);
        void __gmpz_mod (mpz_t r, const mpz_t n, const mpz_t d);
        void __gmpz_neg (mpz_t rop, const mpz_t op);
        void __gmpz_abs (mpz_t rop, const mpz_t op);
        void __gmpz_and (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_ior (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_clear (mpz_t x);
        void __gmpz_tdiv_q_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b);
        void __gmpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d);
        void __gmpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2);
        int __gmpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index);
        int __gmpz_perfect_square_p (const mpz_t op);
        int __gmpz_jacobi (const mpz_t a, const mpz_t b);
        void __gmpz_gcd (mpz_t rop, const mpz_t op1, const mpz_t op2);
        UNIX_ULONG __gmpz_gcd_ui (mpz_t rop, const mpz_t op1,
                                     UNIX_ULONG op2);
        void __gmpz_lcm (mpz_t rop, const mpz_t op1, const mpz_t op2);
        int __gmpz_invert (mpz_t rop, const mpz_t op1, const mpz_t op2);
        int __gmpz_divisible_p (const mpz_t n, const mpz_t d);
        int __gmpz_divisible_ui_p (const mpz_t n, UNIX_ULONG d);
        win32zNot using GMP on WindowsZgmp)ZlibraryapiZ__mpir_versionzMPIR library detectedr   ctypes)	Structurec_intc_void_pbyrefc                   @   s"   e Zd ZdefdefdefgZdS )_MPZZ	_mp_allocZ_mp_sizeZ_mp_dN)__name__
__module____qualname__r   r   _fields_ r   r   F/usr/local/lib/python3.10/dist-packages/Cryptodome/Math/_IntegerGMP.pyr   q   s
    r   c                   C   s
   t t S N)r   r   r   r   r   r   new_mpzv      
r   )ffic                   C   s
   t dS )NzMPZ*)r   newr   r   r   r   r   }   r   c                   @   s   e Zd Zdd ZdS )_GMPc                 C   s^   | drd|dd   }n| drd|dd   }ntd| tt|}t| || |S )NZmpz_Z__gmpz_   Zgmp_Z__gmp_zAttribute %s is invalid)
startswithAttributeErrorgetattrlibsetattr)selfname	func_namefuncr   r   r   __getattr__   s   


z_GMP.__getattr__N)r   r   r   r,   r   r   r   r   r!      s    r!   c                   @   s  e Zd ZdZe Zeeed dd Z	dd Z
dd Zd	d
 Zdd Zdd ZdjddZedd Zdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" ZeZd#d$ Zd%d& Zd'd( Zd)d* Zd+d, Zd-d. Z dkd0d1Z!dkd2d3Z"d4d5 Z#dkd6d7Z$d8d9 Z%d:d; Z&d<d= Z'd>d? Z(d@dA Z)dBdC Z*dDdE Z+dFdG Z,dHdI Z-dJdK Z.dLdM Z/dNdO Z0dPdQ Z1dRdS Z2dTdU Z3dVdW Z4dXdY Z5dZd[ Z6d\d] Z7d^d_ Z8d`da Z9dbdc Z:ddde Z;edfdg Z<dhdi Z=d/S )l
IntegerGMPz#A fast, arbitrary precision integerr   c              	   C   s6  t  | _d| _t|trtdt|rt| j d| _|dkr#dS t  }t| zG|dk}t	|}|
 d d d }|dkrl|d }t|td||d ? @  t||t|d  t| j| j| |dksBW t| nt| w |st| j| j dS dS t|trt| j|j d| _dS t)	z*Initialize the integer to the given value.Fz-A floating point type is not a natural numberTr   Nr           )r   _mpz_p_initialized
isinstancefloat
ValueErrorr   _gmpZmpz_initabs
bit_lengthZ
mpz_set_uir
   mpz_mul_2expmpz_add	mpz_clearmpz_negr-   mpz_init_setNotImplementedError)r(   valuetmpZpositivereduceslotsr   r   r   __init__   s@   



zIntegerGMP.__init__c              	   C   s   t  }t|| j z9d}d}t|| jdkr=t|d@ }|||d > O }t||td |d }t|| jdksW t	| nt	| w | dk rQ| }t
|S )Nr   r/   r.   r   )r   r5   r<   r0   mpz_cmp_zero_mpz_pZ
mpz_get_uimpz_tdiv_q_2expr
   r:   int)r(   r?   r>   slotZlsbr   r   r   __int__   s    zIntegerGMP.__int__c                 C      t t| S r   )strrF   r(   r   r   r   __str__      zIntegerGMP.__str__c                 C   s   dt |  S )NzInteger(%s))rJ   rK   r   r   r   __repr__   rM   zIntegerGMP.__repr__c                 C   rI   r   )hexrF   rK   r   r   r   __hex__   rM   zIntegerGMP.__hex__c                 C   s   t | S r   )rF   rK   r   r   r   	__index__   s   zIntegerGMP.__index__c              	   C   s   | dk rt dt| jdd d }||  kr dkr!t d t|}t|tdtddtd| j dtd||  t	| S )	a=  Convert the number into a byte string.

        This method encodes the number in network order and prepends
        as many zero bytes as required. It only works for non-negative
        values.

        :Parameters:
          block_size : integer
            The exact size the output byte string must have.
            If zero, the string has the minimal length.
        :Returns:
          A byte string.
        :Raise ValueError:
          If the value is negative or if ``block_size`` is
          provided and the length of the byte string would exceed it.
        r   .Conversion only valid for non-negative numbers         z@Number is too big to convert to byte string of prescribed lengthr       )
r4   r5   mpz_sizeinbaser0   r	   Z
mpz_exportr   r   maxr   )r(   
block_sizebuf_lenbufr   r   r   to_bytes   s"   	zIntegerGMP.to_bytesc              	   C   s4   t d}t|jtt| dtddtd|  |S )a   Convert a byte string into a number.

        :Parameters:
          byte_string : byte string
            The input number, encoded in network order.
            It can only be non-negative.
        :Return:
          The ``Integer`` object carrying the same value as the input.
        r   r   )r-   r5   Z
mpz_importr0   r   len)Zbyte_stringresultr   r   r   
from_bytes  s   
zIntegerGMP.from_bytesc                 C   s    t |ts	t|}|| j|jS r   )r2   r-   r0   )r(   r+   termr   r   r   _apply_and_return"  s   
zIntegerGMP._apply_and_returnc                 C   s(   t |tst|sdS | tj|dkS )NFr   r2   r-   r   ra   r5   rC   r(   r`   r   r   r   __eq__'     zIntegerGMP.__eq__c                 C   s(   t |tst|sdS | tj|dkS )NTr   rb   rc   r   r   r   __ne__,  re   zIntegerGMP.__ne__c                 C   s   |  tj|dk S Nr   ra   r5   rC   rc   r   r   r   __lt__1     zIntegerGMP.__lt__c                 C   s   |  tj|dkS rg   rh   rc   r   r   r   __le__4  rj   zIntegerGMP.__le__c                 C   s   |  tj|dkS rg   rh   rc   r   r   r   __gt__7  rj   zIntegerGMP.__gt__c                 C   s   |  tj|dkS rg   rh   rc   r   r   r   __ge__:  rj   zIntegerGMP.__ge__c                 C   s   t | j| jdkS rg   r5   rC   r0   rD   rK   r   r   r   __nonzero__=     zIntegerGMP.__nonzero__c                 C   s   t | j| jdk S rg   rn   rK   r   r   r   is_negativeA  rp   zIntegerGMP.is_negativec                 C   N   t d}t|t szt |}W n ty   t Y S w t|j| j|j |S rg   )r-   r2   r=   NotImplementedr5   r9   r0   r(   r`   r^   r   r   r   __add__E     
zIntegerGMP.__add__c                 C   rr   rg   )r-   r2   r=   rs   r5   mpz_subr0   rt   r   r   r   __sub__Q  rv   zIntegerGMP.__sub__c                 C   rr   rg   )r-   r2   r=   rs   r5   mpz_mulr0   rt   r   r   r   __mul__]  rv   zIntegerGMP.__mul__c                 C   sN   t |ts	t|}t|j| jdkrtdtd}t|j| j|j |S )Nr   Division by zero)r2   r-   r5   rC   r0   rD   ZeroDivisionErrorZ
mpz_fdiv_q)r(   divisorr^   r   r   r   __floordiv__i  s   
zIntegerGMP.__floordiv__c                 C   sb   t |ts	t|}t|j| j}|dkrtd|dk r!tdtd}t|j| j|j |S Nr   r{   Modulus must be positive	r2   r-   r5   rC   r0   rD   r|   r4   Zmpz_mod)r(   r}   compr^   r   r   r   __mod__u  s   
zIntegerGMP.__mod__Nc                 C   s   |d u r#|dk rt d|dkrt dt| j| jtt| | S t|ts,t|}|s2td|	 r:t dt
|r^|dk rFt d|dk rYt| j| jt||j | S t|}n|	 rft dt| j| j|j|j | S )Nr   zExponent must not be negative   zExponent is too bigr{   r      )r4   r5   Z
mpz_pow_uir0   r
   rF   r2   r-   r|   rq   r   Zmpz_powm_uiZmpz_powm)r(   exponentmodulusr   r   r   inplace_pow  sF   


zIntegerGMP.inplace_powc                 C   s   t | }|||S r   )r-   r   )r(   r   r   r^   r   r   r   __pow__  s   zIntegerGMP.__pow__c                 C   s   t d}t|j| j |S rg   )r-   r5   Zmpz_absr0   )r(   r^   r   r   r   __abs__  s   zIntegerGMP.__abs__c                 C   sh   |du r| dk rt dtd}t|j| j |S |dkr"t dt|}t| t| | |}|S )zGReturn the largest Integer that does not
        exceed the square rootNr   zSquare root of negative valuer   )r4   r-   r5   Zmpz_sqrtr0   rF   Z_tonelli_shanksr(   r   r^   r   r   r   sqrt  s   zIntegerGMP.sqrtc                 C      t |r;d|  krdk rn nt| j| jt| | S d|  k r'dk r7n nt| j| jt|  | S t|}t| j| j|j | S Nr   r    )r   r5   
mpz_add_uir0   r
   
mpz_sub_uir-   r9   rc   r   r   r   __iadd__  &   zIntegerGMP.__iadd__c                 C   r   r   )r   r5   r   r0   r
   r   r-   rw   rc   r   r   r   __isub__  r   zIntegerGMP.__isub__c                 C   s   t |rCd|  krdk rn nt| j| jt| | S d|  k r'dk r?n nt| j| jt|  t| j| j | S t|}t| j| j|j | S r   )r   r5   Z
mpz_mul_uir0   r
   r;   r-   ry   rc   r   r   r   __imul__  s(   zIntegerGMP.__imul__c                 C   sZ   t |ts	t|}t|j|j}|dkrtd|dk r!tdt| j| j|j | S r   r   )r(   r}   r   r   r   r   __imod__  s   
zIntegerGMP.__imod__c                 C   2   t d}t|t st |}t|j| j|j |S rg   )r-   r2   r5   Zmpz_andr0   rt   r   r   r   __and__     
zIntegerGMP.__and__c                 C   r   rg   )r-   r2   r5   Zmpz_iorr0   rt   r   r   r   __or__  r   zIntegerGMP.__or__c                 C   sN   t d}|dk rtd|dkr| dk rdS dS t|j| jtt| |S Nr   znegative shift countr   )r-   r4   r5   rE   r0   r
   rF   r(   posr^   r   r   r   
__rshift__  s   
zIntegerGMP.__rshift__c                 C   sF   |dk rt d|dkr| dk rdS dS t| j| jtt| | S r   )r4   r5   rE   r0   r
   rF   r(   r   r   r   r   __irshift__,  s   
zIntegerGMP.__irshift__c                 C   sJ   t d}d|  krdk std tdt|j| jtt| |S Nr   r   zIncorrect shift count)r-   r4   r5   r8   r0   r
   rF   r   r   r   r   
__lshift__9  s   
zIntegerGMP.__lshift__c                 C   sB   d|  krdk st d t dt| j| jtt| | S r   )r4   r5   r8   r0   r
   rF   r   r   r   r   __ilshift__B  s   
zIntegerGMP.__ilshift__c                 C   sF   | dk rt d|dk rt d|dkrdS tt| jtt|S )zPReturn True if the n-th bit is set to 1.
        Bit 0 is the least significant.r   z)no bit representation for negative valuesznegative bit countr   )r4   boolr5   
mpz_tstbitr0   r
   rF   )r(   nr   r   r   get_bitJ  s   

zIntegerGMP.get_bitc                 C   s   t | jddkS )Nr   r   r5   r   r0   rK   r   r   r   is_oddX  rj   zIntegerGMP.is_oddc                 C   s   t | jddkS rg   r   rK   r   r   r   is_even[  rj   zIntegerGMP.is_evenc                 C   s   | dk rt dt| jdS )z=Return the minimum number of bits that can encode the number.r   rR   rS   )r4   r5   rW   r0   rK   r   r   r   size_in_bits^  s   zIntegerGMP.size_in_bitsc                 C   s   |   d d d S )z>Return the minimum number of bytes that can encode the number.r   rU   )r   rK   r   r   r   size_in_bytese  s   zIntegerGMP.size_in_bytesc                 C   s   t | jdkS rg   )r5   Zmpz_perfect_square_pr0   rK   r   r   r   is_perfect_squarei  s   zIntegerGMP.is_perfect_squarec                 C   sb   t |r#d|  k rdk rn nt| jt|rtddS t|}t| j|jr/tddS )z3Raise an exception if the small prime is a divisor.r   r   zThe value is compositeN)r   r5   Zmpz_divisible_ui_pr0   r
   r4   r-   Zmpz_divisible_p)r(   Zsmall_primer   r   r   fail_if_divisible_byl  s   zIntegerGMP.fail_if_divisible_byc                 C   s   t |ts	t|}t|rDd|  k rdk r&n nt| j|jt| | S d|  k r0dk r@n nt| j|jt|  | S t|}t| j|j|j | S )z/Increment the number by the product of a and b.r   r   r   )	r2   r-   r   r5   Zmpz_addmul_uir0   r
   Zmpz_submul_uiZ
mpz_addmul)r(   abr   r   r   multiply_accumulatez  s*   
zIntegerGMP.multiply_accumulatec                 C   s&   t |ts	t|}t| j|j | S )z'Set the Integer to have the given value)r2   r-   r5   Zmpz_setr0   )r(   sourcer   r   r   set  s   
zIntegerGMP.setc                 C   sf   t |ts	t|}t|j| j}|dkrtd|dk r!tdt| j| j|j}|s1td| S )zCompute the inverse of this number in the ring of
        modulo integers.

        Raise an exception if no inverse exists.
        r   zModulus cannot be zeror   z No inverse value can be computed)	r2   r-   r5   rC   r0   rD   r|   r4   Z
mpz_invert)r(   r   r   r^   r   r   r   inplace_inverse  s    
zIntegerGMP.inplace_inversec                 C   s   t | }|| |S r   )r-   r   r   r   r   r   inverse  s   
zIntegerGMP.inversec                 C   sb   t d}t|r%d|  k rdk r!n nt|j| jt| |S t |}t|j| j|j |S )zUCompute the greatest common denominator between this
        number and another term.r   i  )r-   r   r5   Z
mpz_gcd_uir0   r
   Zmpz_gcdrt   r   r   r   gcd  s   zIntegerGMP.gcdc                 C   r   )zQCompute the least common multiplier between this
        number and another term.r   )r-   r2   r5   Zmpz_lcmr0   rt   r   r   r   lcm  s
   
zIntegerGMP.lcmc                 C   sL   t | ts	t| } t |tst|}|dks| rtdt| j|jS )zCompute the Jacobi symbolr   z-n must be positive even for the Jacobi symbol)r2   r-   r   r4   r5   Z
mpz_jacobir0   )r   r   r   r   r   jacobi_symbol  s   

zIntegerGMP.jacobi_symbolc                 C   s>   z| j d ur| jrt| j  d | _ W d S  ty   Y d S w r   )r0   r1   r5   r:   r$   rK   r   r   r   __del__  s   
zIntegerGMP.__del__)r   r   )>r   r   r   __doc__r   rD   r5   Zmpz_init_set_uir
   rB   rH   rL   rN   rP   rQ   r\   staticmethodr_   ra   rd   rf   ri   rk   rl   rm   ro   __bool__rq   ru   rx   rz   r~   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r-      st    +
&


'
				

r-   )!sysZCryptodome.Util.py3compatr   r   ZCryptodome.Util._raw_apir   r   r   r   r   r	   r
   r   Z_IntegerBaser   Zgmp_defsplatformImportErrorr&   implementationhasattrr   r   r   r   r   r   r   r   objectr!   r5   r-   r   r   r   r   <module>   s(   (
8



