from sympy import (symbols, pi, oo, S, exp, sqrt, besselk, Indexed, Sum, simplify,
                   Rational, factorial, gamma, Piecewise, Eq, Product, Interval,
                   IndexedBase, RisingFactorial, polar_lift, ProductSet, Range, eye,
                   Determinant)
from sympy.core.numbers import comp
from sympy.integrals.integrals import integrate
from sympy.matrices import Matrix, MatrixSymbol
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.stats import density, median, marginal_distribution, Normal, Laplace, E, sample
from sympy.stats.joint_rv_types import (JointRV, MultivariateNormalDistribution,
                JointDistributionHandmade, MultivariateT, NormalGamma,
                GeneralizedMultivariateLogGammaOmega as GMVLGO, MultivariateBeta,
                GeneralizedMultivariateLogGamma as GMVLG, MultivariateEwens,
                Multinomial, NegativeMultinomial, MultivariateNormal,
                MultivariateLaplace)
from sympy.testing.pytest import raises, XFAIL, skip
from sympy.external import import_module

x, y, z, a, b = symbols('x y z a b')

def test_Normal():
    m = Normal('A', [1, 2], [[1, 0], [0, 1]])
    A = MultivariateNormal('A', [1, 2], [[1, 0], [0, 1]])
    assert m == A
    assert density(m)(1, 2) == 1/(2*pi)
    assert m.pspace.distribution.set == ProductSet(S.Reals, S.Reals)
    raises (ValueError, lambda:m[2])
    n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    p = Normal('C',  Matrix([1, 2]), Matrix([[1, 0], [0, 1]]))
    assert density(m)(x, y) == density(p)(x, y)
    assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi)
    raises(ValueError, lambda: marginal_distribution(m))
    assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1
    N = Normal('N', [1, 2], [[x, 0], [0, y]])
    assert density(N)(0, 0) == exp(-((4*x + y)/(2*x*y)))/(2*pi*sqrt(x*y))

    raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]]))
    # symbolic
    n = symbols('n', natural=True)
    mu = MatrixSymbol('mu', n, 1)
    sigma = MatrixSymbol('sigma', n, n)
    X = Normal('X', mu, sigma)
    assert density(X) == MultivariateNormalDistribution(mu, sigma)
    raises (NotImplementedError, lambda: median(m))
    # Below tests should work after issue #17267 is resolved
    # assert E(X) == mu
    # assert variance(X) == sigma

    # test symbolic multivariate normal densities
    n = 3

    Sg = MatrixSymbol('Sg', n, n)
    mu = MatrixSymbol('mu', n, 1)
    obs = MatrixSymbol('obs', n, 1)

    X = MultivariateNormal('X', mu, Sg)
    density_X = density(X)

    eval_a = density_X(obs).subs({Sg: eye(3),
        mu: Matrix([0, 0, 0]), obs: Matrix([0, 0, 0])}).doit()
    eval_b = density_X(0, 0, 0).subs({Sg: eye(3), mu: Matrix([0, 0, 0])}).doit()

    assert eval_a == sqrt(2)/(4*pi**Rational(3/2))
    assert eval_b == sqrt(2)/(4*pi**Rational(3/2))

    n = symbols('n', natural=True)

    Sg = MatrixSymbol('Sg', n, n)
    mu = MatrixSymbol('mu', n, 1)
    obs = MatrixSymbol('obs', n, 1)

    X = MultivariateNormal('X', mu, Sg)
    density_X_at_obs = density(X)(obs)

    expected_density = MatrixElement(
        exp((S(1)/2) * (mu.T - obs.T) * Sg**(-1) * (-mu + obs)) / \
        sqrt((2*pi)**n * Determinant(Sg)), 0, 0)

    assert density_X_at_obs == expected_density

def test_MultivariateTDist():
    t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2)
    assert(density(t1))(1, 1) == 1/(8*pi)
    assert t1.pspace.distribution.set == ProductSet(S.Reals, S.Reals)
    assert integrate(density(t1)(x, y), (x, -oo, oo), \
        (y, -oo, oo)).evalf() == 1
    raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1))
    t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1)
    assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y))

def test_multivariate_laplace():
    raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]]))
    L = Laplace('L', [1, 0], [[1, 0], [0, 1]])
    L2 = MultivariateLaplace('L2', [1, 0], [[1, 0], [0, 1]])
    assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(39))/pi
    L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]])
    assert density(L1)(0, 1) == \
        exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y))
    assert L.pspace.distribution.set == ProductSet(S.Reals, S.Reals)
    assert L.pspace.distribution == L2.pspace.distribution

def test_NormalGamma():
    ng = NormalGamma('G', 1, 2, 3, 4)
    assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi)
    assert ng.pspace.distribution.set == ProductSet(S.Reals, Interval(0, oo))
    raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1))
    assert marginal_distribution(ng, 0)(1) == \
        3*sqrt(10)*gamma(Rational(7, 4))/(10*sqrt(pi)*gamma(Rational(5, 4)))
    assert marginal_distribution(ng, y)(1) == exp(Rational(-1, 4))/128
    assert marginal_distribution(ng,[0,1])(x) == x**2*exp(-x/4)/128

def test_GeneralizedMultivariateLogGammaDistribution():
    h = S.Half
    omega = Matrix([[1, h, h, h],
                     [h, 1, h, h],
                     [h, h, 1, h],
                     [h, h, h, 1]])
    v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4])
    y_1, y_2, y_3, y_4 = symbols('y_1:5', real=True)
    delta = symbols('d', positive=True)
    G = GMVLGO('G', omega, v, l, mu)
    Gd = GMVLG('Gd', delta, v, l, mu)
    dend = ("d**4*Sum(4*24**(-n - 4)*(1 - d)**n*exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 "
            "+ 4*y_4) - exp(y_1) - exp(2*y_2)/2 - exp(3*y_3)/3 - exp(4*y_4)/4)/"
            "(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))")
    assert str(density(Gd)(y_1, y_2, y_3, y_4)) == dend
    den = ("5*2**(2/3)*5**(1/3)*Sum(4*24**(-n - 4)*(-2**(2/3)*5**(1/3)/4 + 1)**n*"
          "exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 + 4*y_4) - exp(y_1) - exp(2*y_2)/2 - "
          "exp(3*y_3)/3 - exp(4*y_4)/4)/(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))/64")
    assert str(density(G)(y_1, y_2, y_3, y_4)) == den
    marg = ("5*2**(2/3)*5**(1/3)*exp(4*y_1)*exp(-exp(y_1))*Integral(exp(-exp(4*G[3])"
            "/4)*exp(16*G[3])*Integral(exp(-exp(3*G[2])/3)*exp(12*G[2])*Integral(exp("
            "-exp(2*G[1])/2)*exp(8*G[1])*Sum((-1/4)**n*(-4 + 2**(2/3)*5**(1/3"
            "))**n*exp(n*y_1)*exp(2*n*G[1])*exp(3*n*G[2])*exp(4*n*G[3])/(24**n*gamma(n + 1)"
            "*gamma(n + 4)**3), (n, 0, oo)), (G[1], -oo, oo)), (G[2], -oo, oo)), (G[3]"
            ", -oo, oo))/5308416")
    assert str(marginal_distribution(G, G[0])(y_1)) == marg
    omega_f1 = Matrix([[1, h, h]])
    omega_f2 = Matrix([[1, h, h, h],
                     [h, 1, 2, h],
                     [h, h, 1, h],
                     [h, h, h, 1]])
    omega_f3 = Matrix([[6, h, h, h],
                     [h, 1, 2, h],
                     [h, h, 1, h],
                     [h, h, h, 1]])
    v_f = symbols("v_f", positive=False, real=True)
    l_f = [1, 2, v_f, 4]
    m_f = [v_f, 2, 3, 4]
    omega_f4 = Matrix([[1, h, h, h, h],
                     [h, 1, h, h, h],
                     [h, h, 1, h, h],
                     [h, h, h, 1, h],
                     [h, h, h, h, 1]])
    l_f1 = [1, 2, 3, 4, 5]
    omega_f5 = Matrix([[1]])
    mu_f5 = l_f5 = [1]

    raises(ValueError, lambda: GMVLGO('G', omega_f1, v, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega_f2, v, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega_f3, v, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega, v_f, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega, v, l_f, mu))
    raises(ValueError, lambda: GMVLGO('G', omega, v, l, m_f))
    raises(ValueError, lambda: GMVLGO('G', omega_f4, v, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega, v, l_f1, mu))
    raises(ValueError, lambda: GMVLGO('G', omega_f5, v, l_f5, mu_f5))
    raises(ValueError, lambda: GMVLG('G', Rational(3, 2), v, l, mu))

def test_MultivariateBeta():
    a1, a2 = symbols('a1, a2', positive=True)
    a1_f, a2_f = symbols('a1, a2', positive=False, real=True)
    mb = MultivariateBeta('B', [a1, a2])
    mb_c = MultivariateBeta('C', a1, a2)
    assert density(mb)(1, 2) == S(2)**(a2 - 1)*gamma(a1 + a2)/\
                                (gamma(a1)*gamma(a2))
    assert marginal_distribution(mb_c, 0)(3) == S(3)**(a1 - 1)*gamma(a1 + a2)/\
                                                (a2*gamma(a1)*gamma(a2))
    raises(ValueError, lambda: MultivariateBeta('b1', [a1_f, a2]))
    raises(ValueError, lambda: MultivariateBeta('b2', [a1, a2_f]))
    raises(ValueError, lambda: MultivariateBeta('b3', [0, 0]))
    raises(ValueError, lambda: MultivariateBeta('b4', [a1_f, a2_f]))
    assert mb.pspace.distribution.set == ProductSet(Interval(0, 1), Interval(0, 1))

def test_MultivariateEwens():
    n, theta, i = symbols('n theta i', positive=True)

    # tests for integer dimensions
    theta_f = symbols('t_f', negative=True)
    a = symbols('a_1:4', positive = True, integer = True)
    ed = MultivariateEwens('E', 3, theta)
    assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])*
                                            theta**a[0]*theta**a[1]*theta**a[2]/
                                            (theta*(theta + 1)*(theta + 2)*
                                            factorial(a[0])*factorial(a[1])*
                                            factorial(a[2])), Eq(a[0] + 2*a[1] +
                                            3*a[2], 3)), (0, True))
    assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])*
                                                    theta**a[1]/((theta + 1)*
                                                    (theta + 2)*factorial(a[1])),
                                                    Eq(2*a[1] + 1, 3)), (0, True))
    raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f))
    assert ed.pspace.distribution.set == ProductSet(Range(0, 4, 1),
                                            Range(0, 2, 1), Range(0, 2, 1))

    # tests for symbolic dimensions
    eds = MultivariateEwens('E', n, theta)
    a = IndexedBase('a')
    j, k = symbols('j, k')
    den = Piecewise((factorial(n)*Product(theta**a[j]*(j + 1)**(-a[j])/
           factorial(a[j]), (j, 0, n - 1))/RisingFactorial(theta, n),
            Eq(n, Sum((k + 1)*a[k], (k, 0, n - 1)))), (0, True))
    assert density(eds)(a).dummy_eq(den)

def test_Multinomial():
    n, x1, x2, x3, x4 = symbols('n, x1, x2, x3, x4', nonnegative=True, integer=True)
    p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True)
    p1_f, n_f = symbols('p1_f, n_f', negative=True)
    M = Multinomial('M', n, [p1, p2, p3, p4])
    C = Multinomial('C', 3, p1, p2, p3)
    f = factorial
    assert density(M)(x1, x2, x3, x4) == Piecewise((p1**x1*p2**x2*p3**x3*p4**x4*
                                            f(n)/(f(x1)*f(x2)*f(x3)*f(x4)),
                                            Eq(n, x1 + x2 + x3 + x4)), (0, True))
    assert marginal_distribution(C, C[0])(x1).subs(x1, 1) ==\
                                                            3*p1*p2**2 +\
                                                            6*p1*p2*p3 +\
                                                            3*p1*p3**2
    raises(ValueError, lambda: Multinomial('b1', 5, [p1, p2, p3, p1_f]))
    raises(ValueError, lambda: Multinomial('b2', n_f, [p1, p2, p3, p4]))
    raises(ValueError, lambda: Multinomial('b3', n, 0.5, 0.4, 0.3, 0.1))

def test_NegativeMultinomial():
    k0, x1, x2, x3, x4 = symbols('k0, x1, x2, x3, x4', nonnegative=True, integer=True)
    p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True)
    p1_f = symbols('p1_f', negative=True)
    N = NegativeMultinomial('N', 4, [p1, p2, p3, p4])
    C = NegativeMultinomial('C', 4, 0.1, 0.2, 0.3)
    g = gamma
    f = factorial
    assert simplify(density(N)(x1, x2, x3, x4) -
            p1**x1*p2**x2*p3**x3*p4**x4*(-p1 - p2 - p3 - p4 + 1)**4*g(x1 + x2 +
            x3 + x4 + 4)/(6*f(x1)*f(x2)*f(x3)*f(x4))) is S.Zero
    assert comp(marginal_distribution(C, C[0])(1).evalf(), 0.33, .01)
    raises(ValueError, lambda: NegativeMultinomial('b1', 5, [p1, p2, p3, p1_f]))
    raises(ValueError, lambda: NegativeMultinomial('b2', k0, 0.5, 0.4, 0.3, 0.4))
    assert N.pspace.distribution.set == ProductSet(Range(0, oo, 1),
                    Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1))

def test_JointPSpace_marginal_distribution():
    T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2)
    assert marginal_distribution(T, T[1])(x) == sqrt(2)*(x**2 + 2)/(
        8*polar_lift(x**2/2 + 1)**Rational(5, 2))
    assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1

    t = MultivariateT('T', [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 3)
    assert comp(marginal_distribution(t, 0)(1).evalf(), 0.2, .01)

def test_JointRV():
    x1, x2 = (Indexed('x', i) for i in (1, 2))
    pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi)
    X = JointRV('x', pdf)
    assert density(X)(1, 2) == exp(-2)/(2*pi)
    assert isinstance(X.pspace.distribution, JointDistributionHandmade)
    assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(Rational(-1, 2))/(2*sqrt(pi))

def test_expectation():
    m = Normal('A', [x, y], [[1, 0], [0, 1]])
    assert simplify(E(m[1])) == y

@XFAIL
def test_joint_vector_expectation():
    m = Normal('A', [x, y], [[1, 0], [0, 1]])
    assert E(m) == (x, y)


def test_sample_numpy():
    distribs_numpy = [
        MultivariateNormal("M", [3, 4], [[2, 1], [1, 2]]),
        MultivariateBeta("B", [0.4, 5, 15, 50, 203]),
        Multinomial("N", 50, [0.3, 0.2, 0.1, 0.25, 0.15])
    ]
    size = 3
    numpy = import_module('numpy')
    if not numpy:
        skip('Numpy is not installed. Abort tests for _sample_numpy.')
    else:
        for X in distribs_numpy:
            samps = sample(X, size=size, library='numpy')
            for sam in samps:
                assert tuple(sam) in X.pspace.distribution.set
        N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1)
        raises(NotImplementedError, lambda: sample(N_c, library='numpy'))

def test_sample_scipy():
    distribs_scipy = [
        MultivariateNormal("M", [0, 0], [[0.1, 0.025], [0.025, 0.1]]),
        MultivariateBeta("B", [0.4, 5, 15]),
        Multinomial("N", 8, [0.3, 0.2, 0.1, 0.4])
    ]

    size = 3
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy not installed. Abort tests for _sample_scipy.')
    else:
        for X in distribs_scipy:
            samps = sample(X, size=size)
            samps2 = sample(X, size=(2, 2))
            for sam in samps:
                assert tuple(sam) in X.pspace.distribution.set
            for i in range(2):
                for j in range(2):
                    assert tuple(samps2[i][j]) in X.pspace.distribution.set
        N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1)
        raises(NotImplementedError, lambda: sample(N_c))


def test_sample_pymc3():
    distribs_pymc3 = [
        MultivariateNormal("M", [5, 2], [[1, 0], [0, 1]]),
        MultivariateBeta("B", [0.4, 5, 15]),
        Multinomial("N", 4, [0.3, 0.2, 0.1, 0.4])
    ]
    size = 3
    pymc3 = import_module('pymc3')
    if not pymc3:
        skip('PyMC3 is not installed. Abort tests for _sample_pymc3.')
    else:
        for X in distribs_pymc3:
            samps = sample(X, size=size, library='pymc3')
            for sam in samps:
                assert tuple(sam.flatten()) in X.pspace.distribution.set
        N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1)
        raises(NotImplementedError, lambda: sample(N_c, library='pymc3'))

def test_sample_seed():
    x1, x2 = (Indexed('x', i) for i in (1, 2))
    pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi)
    X = JointRV('x', pdf)

    libraries = ['scipy', 'numpy', 'pymc3']
    for lib in libraries:
        try:
            imported_lib = import_module(lib)
            if imported_lib:
                s0, s1, s2 = [], [], []
                s0 = sample(X, size=10, library=lib, seed=0)
                s1 = sample(X, size=10, library=lib, seed=0)
                s2 = sample(X, size=10, library=lib, seed=1)
                assert all(s0 == s1)
                assert all(s1 != s2)
        except NotImplementedError:
            continue


def test_issue_21057():
    m = Normal("x", [0, 0], [[0, 0], [0, 0]])
    n = MultivariateNormal("x", [0, 0], [[0, 0], [0, 0]])
    p = Normal("x", [0, 0], [[0, 0], [0, 1]])
    assert m == n
    libraries = ['scipy', 'numpy', 'pymc3']
    for library in libraries:
        try:
            imported_lib = import_module(library)
            if imported_lib:
                s1 = sample(m, size=8)
                s2 = sample(n, size=8)
                s3 = sample(p, size=8)
                assert tuple(s1.flatten()) == tuple(s2.flatten())
                for s in s3:
                    assert tuple(s.flatten()) in p.pspace.distribution.set
        except NotImplementedError:
            continue
