from sympy import (symbols, Symbol, oo, Sum, harmonic, exp, Add, S, binomial,
    factorial, log, fibonacci, subfactorial, sin, cos, pi, I, sqrt, Rational, gamma)
from sympy.series.limitseq import limit_seq
from sympy.series.limitseq import difference_delta as dd
from sympy.testing.pytest import raises, XFAIL
from sympy.calculus.util import AccumulationBounds

n, m, k = symbols('n m k', integer=True)


def test_difference_delta():
    e = n*(n + 1)
    e2 = e * k

    assert dd(e) == 2*n + 2
    assert dd(e2, n, 2) == k*(4*n + 6)

    raises(ValueError, lambda: dd(e2))
    raises(ValueError, lambda: dd(e2, n, oo))


def test_difference_delta__Sum():
    e = Sum(1/k, (k, 1, n))
    assert dd(e, n) == 1/(n + 1)
    assert dd(e, n, 5) == Add(*[1/(i + n + 1) for i in range(5)])

    e = Sum(1/k, (k, 1, 3*n))
    assert dd(e, n) == Add(*[1/(i + 3*n + 1) for i in range(3)])

    e = n * Sum(1/k, (k, 1, n))
    assert dd(e, n) == 1 + Sum(1/k, (k, 1, n))

    e = Sum(1/k, (k, 1, n), (m, 1, n))
    assert dd(e, n) == harmonic(n)


def test_difference_delta__Add():
    e = n + n*(n + 1)
    assert dd(e, n) == 2*n + 3
    assert dd(e, n, 2) == 4*n + 8

    e = n + Sum(1/k, (k, 1, n))
    assert dd(e, n) == 1 + 1/(n + 1)
    assert dd(e, n, 5) == 5 + Add(*[1/(i + n + 1) for i in range(5)])


def test_difference_delta__Pow():
    e = 4**n
    assert dd(e, n) == 3*4**n
    assert dd(e, n, 2) == 15*4**n

    e = 4**(2*n)
    assert dd(e, n) == 15*4**(2*n)
    assert dd(e, n, 2) == 255*4**(2*n)

    e = n**4
    assert dd(e, n) == (n + 1)**4 - n**4

    e = n**n
    assert dd(e, n) == (n + 1)**(n + 1) - n**n


def test_limit_seq():
    e = binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n))
    assert limit_seq(e) == S(3) / 4
    assert limit_seq(e, m) == e

    e = (5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5)
    assert limit_seq(e, n) == S(5) / 3

    e = (harmonic(n) * Sum(harmonic(k), (k, 1, n))) / (n * harmonic(2*n)**2)
    assert limit_seq(e, n) == 1

    e = Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n)
    assert limit_seq(e, n) == 4

    e = (Sum(binomial(3*k, k) * binomial(5*k, k), (k, 1, n)) /
         (binomial(3*n, n) * binomial(5*n, n)))
    assert limit_seq(e, n) == S(84375) / 83351

    e = Sum(harmonic(k)**2/k, (k, 1, 2*n)) / harmonic(n)**3
    assert limit_seq(e, n) == S.One / 3

    raises(ValueError, lambda: limit_seq(e * m))


def test_alternating_sign():
    assert limit_seq((-1)**n/n**2, n) == 0
    assert limit_seq((-2)**(n+1)/(n + 3**n), n) == 0
    assert limit_seq((2*n + (-1)**n)/(n + 1), n) == 2
    assert limit_seq(sin(pi*n), n) == 0
    assert limit_seq(cos(2*pi*n), n) == 1
    assert limit_seq((S.NegativeOne/5)**n, n) == 0
    assert limit_seq((Rational(-1, 5))**n, n) == 0
    assert limit_seq((I/3)**n, n) == 0
    assert limit_seq(sqrt(n)*(I/2)**n, n) == 0
    assert limit_seq(n**7*(I/3)**n, n) == 0
    assert limit_seq(n/(n + 1) + (I/2)**n, n) == 1


def test_accum_bounds():
    assert limit_seq((-1)**n, n) == AccumulationBounds(-1, 1)
    assert limit_seq(cos(pi*n), n) == AccumulationBounds(-1, 1)
    assert limit_seq(sin(pi*n/2)**2, n) == AccumulationBounds(0, 1)
    assert limit_seq(2*(-3)**n/(n + 3**n), n) == AccumulationBounds(-2, 2)
    assert limit_seq(3*n/(n + 1) + 2*(-1)**n, n) == AccumulationBounds(1, 5)


def test_limitseq_sum():
    from sympy.abc import x, y, z
    assert limit_seq(Sum(1/x, (x, 1, y)) - log(y), y) == S.EulerGamma
    assert limit_seq(Sum(1/x, (x, 1, y)) - 1/y, y) is S.Infinity
    assert (limit_seq(binomial(2*x, x) / Sum(binomial(2*y, y), (y, 1, x)), x) ==
            S(3) / 4)
    assert (limit_seq(Sum(y**2 * Sum(2**z/z, (z, 1, y)), (y, 1, x)) /
                  (2**x*x), x) == 4)


def test_issue_9308():
    assert limit_seq(subfactorial(n)/factorial(n), n) == exp(-1)


def test_issue_10382():
    n = Symbol('n', integer=True)
    assert limit_seq(fibonacci(n+1)/fibonacci(n), n) == S.GoldenRatio


def test_issue_11672():
    assert limit_seq(Rational(-1, 2)**n, n) == 0


def test_issue_16735():
    assert limit_seq(5**n/factorial(n), n) == 0


def test_issue_19868():
    assert limit_seq(1/gamma(n + S.One/2), n) == 0


@XFAIL
def test_limit_seq_fail():
    # improve Summation algorithm or add ad-hoc criteria
    e = (harmonic(n)**3 * Sum(1/harmonic(k), (k, 1, n)) /
         (n * Sum(harmonic(k)/k, (k, 1, n))))
    assert limit_seq(e, n) == 2

    # No unique dominant term
    e = (Sum(2**k * binomial(2*k, k) / k**2, (k, 1, n)) /
         (Sum(2**k/k*2, (k, 1, n)) * Sum(binomial(2*k, k), (k, 1, n))))
    assert limit_seq(e, n) == S(3) / 7

    # Simplifications of summations needs to be improved.
    e = n**3*Sum(2**k/k**2, (k, 1, n))**2 / (2**n * Sum(2**k/k, (k, 1, n)))
    assert limit_seq(e, n) == 2

    e = (harmonic(n) * Sum(2**k/k, (k, 1, n)) /
         (n * Sum(2**k*harmonic(k)/k**2, (k, 1, n))))
    assert limit_seq(e, n) == 1

    e = (Sum(2**k*factorial(k) / k**2, (k, 1, 2*n)) /
         (Sum(4**k/k**2, (k, 1, n)) * Sum(factorial(k), (k, 1, 2*n))))
    assert limit_seq(e, n) == S(3) / 16
