"""Sparse polynomial rings. """


from typing import Any, Dict

from operator import add, mul, lt, le, gt, ge
from functools import reduce
from types import GeneratorType

from sympy.core.compatibility import is_sequence
from sympy.core.expr import Expr
from sympy.core.numbers import igcd, oo
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify, sympify
from sympy.ntheory.multinomial import multinomial_coefficients
from sympy.polys.compatibility import IPolys
from sympy.polys.constructor import construct_domain
from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.heuristicgcd import heugcd
from sympy.polys.monomials import MonomialOps
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import (
    CoercionFailed, GeneratorsError,
    ExactQuotientFailed, MultivariatePolynomialError)
from sympy.polys.polyoptions import (Domain as DomainOpt,
                                     Order as OrderOpt, build_options)
from sympy.polys.polyutils import (expr_from_dict, _dict_reorder,
                                   _parallel_dict_from_expr)
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.magic import pollute

@public
def ring(symbols, domain, order=lex):
    """Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``.

    Parameters
    ==========

    symbols : str
        Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
    domain : :class:`~.Domain` or coercible
    order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``

    Examples
    ========

    >>> from sympy.polys.rings import ring
    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.orderings import lex

    >>> R, x, y, z = ring("x,y,z", ZZ, lex)
    >>> R
    Polynomial ring in x, y, z over ZZ with lex order
    >>> x + y + z
    x + y + z
    >>> type(_)
    <class 'sympy.polys.rings.PolyElement'>

    """
    _ring = PolyRing(symbols, domain, order)
    return (_ring,) + _ring.gens

@public
def xring(symbols, domain, order=lex):
    """Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``.

    Parameters
    ==========

    symbols : str
        Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
    domain : :class:`~.Domain` or coercible
    order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``

    Examples
    ========

    >>> from sympy.polys.rings import xring
    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.orderings import lex

    >>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
    >>> R
    Polynomial ring in x, y, z over ZZ with lex order
    >>> x + y + z
    x + y + z
    >>> type(_)
    <class 'sympy.polys.rings.PolyElement'>

    """
    _ring = PolyRing(symbols, domain, order)
    return (_ring, _ring.gens)

@public
def vring(symbols, domain, order=lex):
    """Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace.

    Parameters
    ==========

    symbols : str
        Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
    domain : :class:`~.Domain` or coercible
    order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``

    Examples
    ========

    >>> from sympy.polys.rings import vring
    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.orderings import lex

    >>> vring("x,y,z", ZZ, lex)
    Polynomial ring in x, y, z over ZZ with lex order
    >>> x + y + z # noqa:
    x + y + z
    >>> type(_)
    <class 'sympy.polys.rings.PolyElement'>

    """
    _ring = PolyRing(symbols, domain, order)
    pollute([ sym.name for sym in _ring.symbols ], _ring.gens)
    return _ring

@public
def sring(exprs, *symbols, **options):
    """Construct a ring deriving generators and domain from options and input expressions.

    Parameters
    ==========

    exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable)
    symbols : sequence of :class:`~.Symbol`/:class:`~.Expr`
    options : keyword arguments understood by :class:`~.Options`

    Examples
    ========

    >>> from sympy.core import symbols
    >>> from sympy.polys.rings import sring

    >>> x, y, z = symbols("x,y,z")
    >>> R, f = sring(x + 2*y + 3*z)
    >>> R
    Polynomial ring in x, y, z over ZZ with lex order
    >>> f
    x + 2*y + 3*z
    >>> type(_)
    <class 'sympy.polys.rings.PolyElement'>

    """
    single = False

    if not is_sequence(exprs):
        exprs, single = [exprs], True

    exprs = list(map(sympify, exprs))
    opt = build_options(symbols, options)

    # TODO: rewrite this so that it doesn't use expand() (see poly()).
    reps, opt = _parallel_dict_from_expr(exprs, opt)

    if opt.domain is None:
        coeffs = sum([ list(rep.values()) for rep in reps ], [])

        opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt)

        coeff_map = dict(zip(coeffs, coeffs_dom))
        reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps]

    _ring = PolyRing(opt.gens, opt.domain, opt.order)
    polys = list(map(_ring.from_dict, reps))

    if single:
        return (_ring, polys[0])
    else:
        return (_ring, polys)

def _parse_symbols(symbols):
    if isinstance(symbols, str):
        return _symbols(symbols, seq=True) if symbols else ()
    elif isinstance(symbols, Expr):
        return (symbols,)
    elif is_sequence(symbols):
        if all(isinstance(s, str) for s in symbols):
            return _symbols(symbols)
        elif all(isinstance(s, Expr) for s in symbols):
            return symbols

    raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions")

_ring_cache = {}  # type: Dict[Any, Any]

class PolyRing(DefaultPrinting, IPolys):
    """Multivariate distributed polynomial ring. """

    def __new__(cls, symbols, domain, order=lex):
        symbols = tuple(_parse_symbols(symbols))
        ngens = len(symbols)
        domain = DomainOpt.preprocess(domain)
        order = OrderOpt.preprocess(order)

        _hash_tuple = (cls.__name__, symbols, ngens, domain, order)
        obj = _ring_cache.get(_hash_tuple)

        if obj is None:
            if domain.is_Composite and set(symbols) & set(domain.symbols):
                raise GeneratorsError("polynomial ring and it's ground domain share generators")

            obj = object.__new__(cls)
            obj._hash_tuple = _hash_tuple
            obj._hash = hash(_hash_tuple)
            obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj})
            obj.symbols = symbols
            obj.ngens = ngens
            obj.domain = domain
            obj.order = order

            obj.zero_monom = (0,)*ngens
            obj.gens = obj._gens()
            obj._gens_set = set(obj.gens)

            obj._one = [(obj.zero_monom, domain.one)]

            if ngens:
                # These expect monomials in at least one variable
                codegen = MonomialOps(ngens)
                obj.monomial_mul = codegen.mul()
                obj.monomial_pow = codegen.pow()
                obj.monomial_mulpow = codegen.mulpow()
                obj.monomial_ldiv = codegen.ldiv()
                obj.monomial_div = codegen.div()
                obj.monomial_lcm = codegen.lcm()
                obj.monomial_gcd = codegen.gcd()
            else:
                monunit = lambda a, b: ()
                obj.monomial_mul = monunit
                obj.monomial_pow = monunit
                obj.monomial_mulpow = lambda a, b, c: ()
                obj.monomial_ldiv = monunit
                obj.monomial_div = monunit
                obj.monomial_lcm = monunit
                obj.monomial_gcd = monunit


            if order is lex:
                obj.leading_expv = lambda f: max(f)
            else:
                obj.leading_expv = lambda f: max(f, key=order)

            for symbol, generator in zip(obj.symbols, obj.gens):
                if isinstance(symbol, Symbol):
                    name = symbol.name

                    if not hasattr(obj, name):
                        setattr(obj, name, generator)

            _ring_cache[_hash_tuple] = obj

        return obj

    def _gens(self):
        """Return a list of polynomial generators. """
        one = self.domain.one
        _gens = []
        for i in range(self.ngens):
            expv = self.monomial_basis(i)
            poly = self.zero
            poly[expv] = one
            _gens.append(poly)
        return tuple(_gens)

    def __getnewargs__(self):
        return (self.symbols, self.domain, self.order)

    def __getstate__(self):
        state = self.__dict__.copy()
        del state["leading_expv"]

        for key, value in state.items():
            if key.startswith("monomial_"):
                del state[key]

        return state

    def __hash__(self):
        return self._hash

    def __eq__(self, other):
        return isinstance(other, PolyRing) and \
            (self.symbols, self.domain, self.ngens, self.order) == \
            (other.symbols, other.domain, other.ngens, other.order)

    def __ne__(self, other):
        return not self == other

    def clone(self, symbols=None, domain=None, order=None):
        return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order)

    def monomial_basis(self, i):
        """Return the ith-basis element. """
        basis = [0]*self.ngens
        basis[i] = 1
        return tuple(basis)

    @property
    def zero(self):
        return self.dtype()

    @property
    def one(self):
        return self.dtype(self._one)

    def domain_new(self, element, orig_domain=None):
        return self.domain.convert(element, orig_domain)

    def ground_new(self, coeff):
        return self.term_new(self.zero_monom, coeff)

    def term_new(self, monom, coeff):
        coeff = self.domain_new(coeff)
        poly = self.zero
        if coeff:
            poly[monom] = coeff
        return poly

    def ring_new(self, element):
        if isinstance(element, PolyElement):
            if self == element.ring:
                return element
            elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring:
                return self.ground_new(element)
            else:
                raise NotImplementedError("conversion")
        elif isinstance(element, str):
            raise NotImplementedError("parsing")
        elif isinstance(element, dict):
            return self.from_dict(element)
        elif isinstance(element, list):
            try:
                return self.from_terms(element)
            except ValueError:
                return self.from_list(element)
        elif isinstance(element, Expr):
            return self.from_expr(element)
        else:
            return self.ground_new(element)

    __call__ = ring_new

    def from_dict(self, element, orig_domain=None):
        domain_new = self.domain_new
        poly = self.zero

        for monom, coeff in element.items():
            coeff = domain_new(coeff, orig_domain)
            if coeff:
                poly[monom] = coeff

        return poly

    def from_terms(self, element, orig_domain=None):
        return self.from_dict(dict(element), orig_domain)

    def from_list(self, element):
        return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))

    def _rebuild_expr(self, expr, mapping):
        domain = self.domain

        def _rebuild(expr):
            generator = mapping.get(expr)

            if generator is not None:
                return generator
            elif expr.is_Add:
                return reduce(add, list(map(_rebuild, expr.args)))
            elif expr.is_Mul:
                return reduce(mul, list(map(_rebuild, expr.args)))
            else:
                # XXX: Use as_base_exp() to handle Pow(x, n) and also exp(n)
                # XXX: E can be a generator e.g. sring([exp(2)]) -> ZZ[E]
                base, exp = expr.as_base_exp()
                if exp.is_Integer and exp > 1:
                    return _rebuild(base)**int(exp)
                else:
                    return self.ground_new(domain.convert(expr))

        return _rebuild(sympify(expr))

    def from_expr(self, expr):
        mapping = dict(list(zip(self.symbols, self.gens)))

        try:
            poly = self._rebuild_expr(expr, mapping)
        except CoercionFailed:
            raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
        else:
            return self.ring_new(poly)

    def index(self, gen):
        """Compute index of ``gen`` in ``self.gens``. """
        if gen is None:
            if self.ngens:
                i = 0
            else:
                i = -1  # indicate impossible choice
        elif isinstance(gen, int):
            i = gen

            if 0 <= i and i < self.ngens:
                pass
            elif -self.ngens <= i and i <= -1:
                i = -i - 1
            else:
                raise ValueError("invalid generator index: %s" % gen)
        elif isinstance(gen, self.dtype):
            try:
                i = self.gens.index(gen)
            except ValueError:
                raise ValueError("invalid generator: %s" % gen)
        elif isinstance(gen, str):
            try:
                i = self.symbols.index(gen)
            except ValueError:
                raise ValueError("invalid generator: %s" % gen)
        else:
            raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen)

        return i

    def drop(self, *gens):
        """Remove specified generators from this ring. """
        indices = set(map(self.index, gens))
        symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ]

        if not symbols:
            return self.domain
        else:
            return self.clone(symbols=symbols)

    def __getitem__(self, key):
        symbols = self.symbols[key]

        if not symbols:
            return self.domain
        else:
            return self.clone(symbols=symbols)

    def to_ground(self):
        # TODO: should AlgebraicField be a Composite domain?
        if self.domain.is_Composite or hasattr(self.domain, 'domain'):
            return self.clone(domain=self.domain.domain)
        else:
            raise ValueError("%s is not a composite domain" % self.domain)

    def to_domain(self):
        return PolynomialRing(self)

    def to_field(self):
        from sympy.polys.fields import FracField
        return FracField(self.symbols, self.domain, self.order)

    @property
    def is_univariate(self):
        return len(self.gens) == 1

    @property
    def is_multivariate(self):
        return len(self.gens) > 1

    def add(self, *objs):
        """
        Add a sequence of polynomials or containers of polynomials.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> R, x = ring("x", ZZ)
        >>> R.add([ x**2 + 2*i + 3 for i in range(4) ])
        4*x**2 + 24
        >>> _.factor_list()
        (4, [(x**2 + 6, 1)])

        """
        p = self.zero

        for obj in objs:
            if is_sequence(obj, include=GeneratorType):
                p += self.add(*obj)
            else:
                p += obj

        return p

    def mul(self, *objs):
        """
        Multiply a sequence of polynomials or containers of polynomials.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> R, x = ring("x", ZZ)
        >>> R.mul([ x**2 + 2*i + 3 for i in range(4) ])
        x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
        >>> _.factor_list()
        (1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])

        """
        p = self.one

        for obj in objs:
            if is_sequence(obj, include=GeneratorType):
                p *= self.mul(*obj)
            else:
                p *= obj

        return p

    def drop_to_ground(self, *gens):
        r"""
        Remove specified generators from the ring and inject them into
        its domain.
        """
        indices = set(map(self.index, gens))
        symbols = [s for i, s in enumerate(self.symbols) if i not in indices]
        gens = [gen for i, gen in enumerate(self.gens) if i not in indices]

        if not symbols:
            return self
        else:
            return self.clone(symbols=symbols, domain=self.drop(*gens))

    def compose(self, other):
        """Add the generators of ``other`` to ``self``"""
        if self != other:
            syms = set(self.symbols).union(set(other.symbols))
            return self.clone(symbols=list(syms))
        else:
            return self

    def add_gens(self, symbols):
        """Add the elements of ``symbols`` as generators to ``self``"""
        syms = set(self.symbols).union(set(symbols))
        return self.clone(symbols=list(syms))


class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict):
    """Element of multivariate distributed polynomial ring. """

    def new(self, init):
        return self.__class__(init)

    def parent(self):
        return self.ring.to_domain()

    def __getnewargs__(self):
        return (self.ring, list(self.iterterms()))

    _hash = None

    def __hash__(self):
        # XXX: This computes a hash of a dictionary, but currently we don't
        # protect dictionary from being changed so any use site modifications
        # will make hashing go wrong. Use this feature with caution until we
        # figure out how to make a safe API without compromising speed of this
        # low-level class.
        _hash = self._hash
        if _hash is None:
            self._hash = _hash = hash((self.ring, frozenset(self.items())))
        return _hash

    def copy(self):
        """Return a copy of polynomial self.

        Polynomials are mutable; if one is interested in preserving
        a polynomial, and one plans to use inplace operations, one
        can copy the polynomial. This method makes a shallow copy.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> R, x, y = ring('x, y', ZZ)
        >>> p = (x + y)**2
        >>> p1 = p.copy()
        >>> p2 = p
        >>> p[R.zero_monom] = 3
        >>> p
        x**2 + 2*x*y + y**2 + 3
        >>> p1
        x**2 + 2*x*y + y**2
        >>> p2
        x**2 + 2*x*y + y**2 + 3

        """
        return self.new(self)

    def set_ring(self, new_ring):
        if self.ring == new_ring:
            return self
        elif self.ring.symbols != new_ring.symbols:
            terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols)))
            return new_ring.from_terms(terms, self.ring.domain)
        else:
            return new_ring.from_dict(self, self.ring.domain)

    def as_expr(self, *symbols):
        if symbols and len(symbols) != self.ring.ngens:
            raise ValueError("not enough symbols, expected %s got %s" % (self.ring.ngens, len(symbols)))
        else:
            symbols = self.ring.symbols

        return expr_from_dict(self.as_expr_dict(), *symbols)

    def as_expr_dict(self):
        to_sympy = self.ring.domain.to_sympy
        return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()}

    def clear_denoms(self):
        domain = self.ring.domain

        if not domain.is_Field or not domain.has_assoc_Ring:
            return domain.one, self

        ground_ring = domain.get_ring()
        common = ground_ring.one
        lcm = ground_ring.lcm
        denom = domain.denom

        for coeff in self.values():
            common = lcm(common, denom(coeff))

        poly = self.new([ (k, v*common) for k, v in self.items() ])
        return common, poly

    def strip_zero(self):
        """Eliminate monomials with zero coefficient. """
        for k, v in list(self.items()):
            if not v:
                del self[k]

    def __eq__(p1, p2):
        """Equality test for polynomials.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p1 = (x + y)**2 + (x - y)**2
        >>> p1 == 4*x*y
        False
        >>> p1 == 2*(x**2 + y**2)
        True

        """
        if not p2:
            return not p1
        elif isinstance(p2, PolyElement) and p2.ring == p1.ring:
            return dict.__eq__(p1, p2)
        elif len(p1) > 1:
            return False
        else:
            return p1.get(p1.ring.zero_monom) == p2

    def __ne__(p1, p2):
        return not p1 == p2

    def almosteq(p1, p2, tolerance=None):
        """Approximate equality test for polynomials. """
        ring = p1.ring

        if isinstance(p2, ring.dtype):
            if set(p1.keys()) != set(p2.keys()):
                return False

            almosteq = ring.domain.almosteq

            for k in p1.keys():
                if not almosteq(p1[k], p2[k], tolerance):
                    return False
            return True
        elif len(p1) > 1:
            return False
        else:
            try:
                p2 = ring.domain.convert(p2)
            except CoercionFailed:
                return False
            else:
                return ring.domain.almosteq(p1.const(), p2, tolerance)

    def sort_key(self):
        return (len(self), self.terms())

    def _cmp(p1, p2, op):
        if isinstance(p2, p1.ring.dtype):
            return op(p1.sort_key(), p2.sort_key())
        else:
            return NotImplemented

    def __lt__(p1, p2):
        return p1._cmp(p2, lt)
    def __le__(p1, p2):
        return p1._cmp(p2, le)
    def __gt__(p1, p2):
        return p1._cmp(p2, gt)
    def __ge__(p1, p2):
        return p1._cmp(p2, ge)

    def _drop(self, gen):
        ring = self.ring
        i = ring.index(gen)

        if ring.ngens == 1:
            return i, ring.domain
        else:
            symbols = list(ring.symbols)
            del symbols[i]
            return i, ring.clone(symbols=symbols)

    def drop(self, gen):
        i, ring = self._drop(gen)

        if self.ring.ngens == 1:
            if self.is_ground:
                return self.coeff(1)
            else:
                raise ValueError("can't drop %s" % gen)
        else:
            poly = ring.zero

            for k, v in self.items():
                if k[i] == 0:
                    K = list(k)
                    del K[i]
                    poly[tuple(K)] = v
                else:
                    raise ValueError("can't drop %s" % gen)

            return poly

    def _drop_to_ground(self, gen):
        ring = self.ring
        i = ring.index(gen)

        symbols = list(ring.symbols)
        del symbols[i]
        return i, ring.clone(symbols=symbols, domain=ring[i])

    def drop_to_ground(self, gen):
        if self.ring.ngens == 1:
            raise ValueError("can't drop only generator to ground")

        i, ring = self._drop_to_ground(gen)
        poly = ring.zero
        gen = ring.domain.gens[0]

        for monom, coeff in self.iterterms():
            mon = monom[:i] + monom[i+1:]
            if not mon in poly:
                poly[mon] = (gen**monom[i]).mul_ground(coeff)
            else:
                poly[mon] += (gen**monom[i]).mul_ground(coeff)

        return poly

    def to_dense(self):
        return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain)

    def to_dict(self):
        return dict(self)

    def str(self, printer, precedence, exp_pattern, mul_symbol):
        if not self:
            return printer._print(self.ring.domain.zero)
        prec_mul = precedence["Mul"]
        prec_atom = precedence["Atom"]
        ring = self.ring
        symbols = ring.symbols
        ngens = ring.ngens
        zm = ring.zero_monom
        sexpvs = []
        for expv, coeff in self.terms():
            negative = ring.domain.is_negative(coeff)
            sign = " - " if negative else " + "
            sexpvs.append(sign)
            if expv == zm:
                scoeff = printer._print(coeff)
                if negative and scoeff.startswith("-"):
                    scoeff = scoeff[1:]
            else:
                if negative:
                    coeff = -coeff
                if coeff != self.ring.one:
                    scoeff = printer.parenthesize(coeff, prec_mul, strict=True)
                else:
                    scoeff = ''
            sexpv = []
            for i in range(ngens):
                exp = expv[i]
                if not exp:
                    continue
                symbol = printer.parenthesize(symbols[i], prec_atom, strict=True)
                if exp != 1:
                    if exp != int(exp) or exp < 0:
                        sexp = printer.parenthesize(exp, prec_atom, strict=False)
                    else:
                        sexp = exp
                    sexpv.append(exp_pattern % (symbol, sexp))
                else:
                    sexpv.append('%s' % symbol)
            if scoeff:
                sexpv = [scoeff] + sexpv
            sexpvs.append(mul_symbol.join(sexpv))
        if sexpvs[0] in [" + ", " - "]:
            head = sexpvs.pop(0)
            if head == " - ":
                sexpvs.insert(0, "-")
        return "".join(sexpvs)

    @property
    def is_generator(self):
        return self in self.ring._gens_set

    @property
    def is_ground(self):
        return not self or (len(self) == 1 and self.ring.zero_monom in self)

    @property
    def is_monomial(self):
        return not self or (len(self) == 1 and self.LC == 1)

    @property
    def is_term(self):
        return len(self) <= 1

    @property
    def is_negative(self):
        return self.ring.domain.is_negative(self.LC)

    @property
    def is_positive(self):
        return self.ring.domain.is_positive(self.LC)

    @property
    def is_nonnegative(self):
        return self.ring.domain.is_nonnegative(self.LC)

    @property
    def is_nonpositive(self):
        return self.ring.domain.is_nonpositive(self.LC)

    @property
    def is_zero(f):
        return not f

    @property
    def is_one(f):
        return f == f.ring.one

    @property
    def is_monic(f):
        return f.ring.domain.is_one(f.LC)

    @property
    def is_primitive(f):
        return f.ring.domain.is_one(f.content())

    @property
    def is_linear(f):
        return all(sum(monom) <= 1 for monom in f.itermonoms())

    @property
    def is_quadratic(f):
        return all(sum(monom) <= 2 for monom in f.itermonoms())

    @property
    def is_squarefree(f):
        if not f.ring.ngens:
            return True
        return f.ring.dmp_sqf_p(f)

    @property
    def is_irreducible(f):
        if not f.ring.ngens:
            return True
        return f.ring.dmp_irreducible_p(f)

    @property
    def is_cyclotomic(f):
        if f.ring.is_univariate:
            return f.ring.dup_cyclotomic_p(f)
        else:
            raise MultivariatePolynomialError("cyclotomic polynomial")

    def __neg__(self):
        return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ])

    def __pos__(self):
        return self

    def __add__(p1, p2):
        """Add two polynomials.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> (x + y)**2 + (x - y)**2
        2*x**2 + 2*y**2

        """
        if not p2:
            return p1.copy()
        ring = p1.ring
        if isinstance(p2, ring.dtype):
            p = p1.copy()
            get = p.get
            zero = ring.domain.zero
            for k, v in p2.items():
                v = get(k, zero) + v
                if v:
                    p[k] = v
                else:
                    del p[k]
            return p
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__radd__(p1)
            else:
                return NotImplemented

        try:
            cp2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            p = p1.copy()
            if not cp2:
                return p
            zm = ring.zero_monom
            if zm not in p1.keys():
                p[zm] = cp2
            else:
                if p2 == -p[zm]:
                    del p[zm]
                else:
                    p[zm] += cp2
            return p

    def __radd__(p1, n):
        p = p1.copy()
        if not n:
            return p
        ring = p1.ring
        try:
            n = ring.domain_new(n)
        except CoercionFailed:
            return NotImplemented
        else:
            zm = ring.zero_monom
            if zm not in p1.keys():
                p[zm] = n
            else:
                if n == -p[zm]:
                    del p[zm]
                else:
                    p[zm] += n
            return p

    def __sub__(p1, p2):
        """Subtract polynomial p2 from p1.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p1 = x + y**2
        >>> p2 = x*y + y**2
        >>> p1 - p2
        -x*y + x

        """
        if not p2:
            return p1.copy()
        ring = p1.ring
        if isinstance(p2, ring.dtype):
            p = p1.copy()
            get = p.get
            zero = ring.domain.zero
            for k, v in p2.items():
                v = get(k, zero) - v
                if v:
                    p[k] = v
                else:
                    del p[k]
            return p
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rsub__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            p = p1.copy()
            zm = ring.zero_monom
            if zm not in p1.keys():
                p[zm] = -p2
            else:
                if p2 == p[zm]:
                    del p[zm]
                else:
                    p[zm] -= p2
            return p

    def __rsub__(p1, n):
        """n - p1 with n convertible to the coefficient domain.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y
        >>> 4 - p
        -x - y + 4

        """
        ring = p1.ring
        try:
            n = ring.domain_new(n)
        except CoercionFailed:
            return NotImplemented
        else:
            p = ring.zero
            for expv in p1:
                p[expv] = -p1[expv]
            p += n
            return p

    def __mul__(p1, p2):
        """Multiply two polynomials.

        Examples
        ========

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', QQ)
        >>> p1 = x + y
        >>> p2 = x - y
        >>> p1*p2
        x**2 - y**2

        """
        ring = p1.ring
        p = ring.zero
        if not p1 or not p2:
            return p
        elif isinstance(p2, ring.dtype):
            get = p.get
            zero = ring.domain.zero
            monomial_mul = ring.monomial_mul
            p2it = list(p2.items())
            for exp1, v1 in p1.items():
                for exp2, v2 in p2it:
                    exp = monomial_mul(exp1, exp2)
                    p[exp] = get(exp, zero) + v1*v2
            p.strip_zero()
            return p
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rmul__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            for exp1, v1 in p1.items():
                v = v1*p2
                if v:
                    p[exp1] = v
            return p

    def __rmul__(p1, p2):
        """p2 * p1 with p2 in the coefficient domain of p1.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y
        >>> 4 * p
        4*x + 4*y

        """
        p = p1.ring.zero
        if not p2:
            return p
        try:
            p2 = p.ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            for exp1, v1 in p1.items():
                v = p2*v1
                if v:
                    p[exp1] = v
            return p

    def __pow__(self, n):
        """raise polynomial to power `n`

        Examples
        ========

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.rings import ring

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y**2
        >>> p**3
        x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6

        """
        ring = self.ring

        if not n:
            if self:
                return ring.one
            else:
                raise ValueError("0**0")
        elif len(self) == 1:
            monom, coeff = list(self.items())[0]
            p = ring.zero
            if coeff == 1:
                p[ring.monomial_pow(monom, n)] = coeff
            else:
                p[ring.monomial_pow(monom, n)] = coeff**n
            return p

        # For ring series, we need negative and rational exponent support only
        # with monomials.
        n = int(n)
        if n < 0:
            raise ValueError("Negative exponent")

        elif n == 1:
            return self.copy()
        elif n == 2:
            return self.square()
        elif n == 3:
            return self*self.square()
        elif len(self) <= 5: # TODO: use an actual density measure
            return self._pow_multinomial(n)
        else:
            return self._pow_generic(n)

    def _pow_generic(self, n):
        p = self.ring.one
        c = self

        while True:
            if n & 1:
                p = p*c
                n -= 1
                if not n:
                    break

            c = c.square()
            n = n // 2

        return p

    def _pow_multinomial(self, n):
        multinomials = multinomial_coefficients(len(self), n).items()
        monomial_mulpow = self.ring.monomial_mulpow
        zero_monom = self.ring.zero_monom
        terms = self.items()
        zero = self.ring.domain.zero
        poly = self.ring.zero

        for multinomial, multinomial_coeff in multinomials:
            product_monom = zero_monom
            product_coeff = multinomial_coeff

            for exp, (monom, coeff) in zip(multinomial, terms):
                if exp:
                    product_monom = monomial_mulpow(product_monom, monom, exp)
                    product_coeff *= coeff**exp

            monom = tuple(product_monom)
            coeff = product_coeff

            coeff = poly.get(monom, zero) + coeff

            if coeff:
                poly[monom] = coeff
            elif monom in poly:
                del poly[monom]

        return poly

    def square(self):
        """square of a polynomial

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y**2
        >>> p.square()
        x**2 + 2*x*y**2 + y**4

        """
        ring = self.ring
        p = ring.zero
        get = p.get
        keys = list(self.keys())
        zero = ring.domain.zero
        monomial_mul = ring.monomial_mul
        for i in range(len(keys)):
            k1 = keys[i]
            pk = self[k1]
            for j in range(i):
                k2 = keys[j]
                exp = monomial_mul(k1, k2)
                p[exp] = get(exp, zero) + pk*self[k2]
        p = p.imul_num(2)
        get = p.get
        for k, v in self.items():
            k2 = monomial_mul(k, k)
            p[k2] = get(k2, zero) + v**2
        p.strip_zero()
        return p

    def __divmod__(p1, p2):
        ring = p1.ring

        if not p2:
            raise ZeroDivisionError("polynomial division")
        elif isinstance(p2, ring.dtype):
            return p1.div(p2)
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rdivmod__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            return (p1.quo_ground(p2), p1.rem_ground(p2))

    def __rdivmod__(p1, p2):
        return NotImplemented

    def __mod__(p1, p2):
        ring = p1.ring

        if not p2:
            raise ZeroDivisionError("polynomial division")
        elif isinstance(p2, ring.dtype):
            return p1.rem(p2)
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rmod__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            return p1.rem_ground(p2)

    def __rmod__(p1, p2):
        return NotImplemented

    def __truediv__(p1, p2):
        ring = p1.ring

        if not p2:
            raise ZeroDivisionError("polynomial division")
        elif isinstance(p2, ring.dtype):
            if p2.is_monomial:
                return p1*(p2**(-1))
            else:
                return p1.quo(p2)
        elif isinstance(p2, PolyElement):
            if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
                pass
            elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
                return p2.__rtruediv__(p1)
            else:
                return NotImplemented

        try:
            p2 = ring.domain_new(p2)
        except CoercionFailed:
            return NotImplemented
        else:
            return p1.quo_ground(p2)

    def __rtruediv__(p1, p2):
        return NotImplemented

    __floordiv__ = __truediv__
    __rfloordiv__ = __rtruediv__

    # TODO: use // (__floordiv__) for exquo()?

    def _term_div(self):
        zm = self.ring.zero_monom
        domain = self.ring.domain
        domain_quo = domain.quo
        monomial_div = self.ring.monomial_div

        if domain.is_Field:
            def term_div(a_lm_a_lc, b_lm_b_lc):
                a_lm, a_lc = a_lm_a_lc
                b_lm, b_lc = b_lm_b_lc
                if b_lm == zm: # apparently this is a very common case
                    monom = a_lm
                else:
                    monom = monomial_div(a_lm, b_lm)
                if monom is not None:
                    return monom, domain_quo(a_lc, b_lc)
                else:
                    return None
        else:
            def term_div(a_lm_a_lc, b_lm_b_lc):
                a_lm, a_lc = a_lm_a_lc
                b_lm, b_lc = b_lm_b_lc
                if b_lm == zm: # apparently this is a very common case
                    monom = a_lm
                else:
                    monom = monomial_div(a_lm, b_lm)
                if not (monom is None or a_lc % b_lc):
                    return monom, domain_quo(a_lc, b_lc)
                else:
                    return None

        return term_div

    def div(self, fv):
        """Division algorithm, see [CLO] p64.

        fv array of polynomials
           return qv, r such that
           self = sum(fv[i]*qv[i]) + r

        All polynomials are required not to be Laurent polynomials.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> f = x**3
        >>> f0 = x - y**2
        >>> f1 = x - y
        >>> qv, r = f.div((f0, f1))
        >>> qv[0]
        x**2 + x*y**2 + y**4
        >>> qv[1]
        0
        >>> r
        y**6

        """
        ring = self.ring
        ret_single = False
        if isinstance(fv, PolyElement):
            ret_single = True
            fv = [fv]
        if any(not f for f in fv):
            raise ZeroDivisionError("polynomial division")
        if not self:
            if ret_single:
                return ring.zero, ring.zero
            else:
                return [], ring.zero
        for f in fv:
            if f.ring != ring:
                raise ValueError('self and f must have the same ring')
        s = len(fv)
        qv = [ring.zero for i in range(s)]
        p = self.copy()
        r = ring.zero
        term_div = self._term_div()
        expvs = [fx.leading_expv() for fx in fv]
        while p:
            i = 0
            divoccurred = 0
            while i < s and divoccurred == 0:
                expv = p.leading_expv()
                term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]]))
                if term is not None:
                    expv1, c = term
                    qv[i] = qv[i]._iadd_monom((expv1, c))
                    p = p._iadd_poly_monom(fv[i], (expv1, -c))
                    divoccurred = 1
                else:
                    i += 1
            if not divoccurred:
                expv =  p.leading_expv()
                r = r._iadd_monom((expv, p[expv]))
                del p[expv]
        if expv == ring.zero_monom:
            r += p
        if ret_single:
            if not qv:
                return ring.zero, r
            else:
                return qv[0], r
        else:
            return qv, r

    def rem(self, G):
        f = self
        if isinstance(G, PolyElement):
            G = [G]
        if any(not g for g in G):
            raise ZeroDivisionError("polynomial division")
        ring = f.ring
        domain = ring.domain
        zero = domain.zero
        monomial_mul = ring.monomial_mul
        r = ring.zero
        term_div = f._term_div()
        ltf = f.LT
        f = f.copy()
        get = f.get
        while f:
            for g in G:
                tq = term_div(ltf, g.LT)
                if tq is not None:
                    m, c = tq
                    for mg, cg in g.iterterms():
                        m1 = monomial_mul(mg, m)
                        c1 = get(m1, zero) - c*cg
                        if not c1:
                            del f[m1]
                        else:
                            f[m1] = c1
                    ltm = f.leading_expv()
                    if ltm is not None:
                        ltf = ltm, f[ltm]

                    break
            else:
                ltm, ltc = ltf
                if ltm in r:
                    r[ltm] += ltc
                else:
                    r[ltm] = ltc
                del f[ltm]
                ltm = f.leading_expv()
                if ltm is not None:
                    ltf = ltm, f[ltm]

        return r

    def quo(f, G):
        return f.div(G)[0]

    def exquo(f, G):
        q, r = f.div(G)

        if not r:
            return q
        else:
            raise ExactQuotientFailed(f, G)

    def _iadd_monom(self, mc):
        """add to self the monomial coeff*x0**i0*x1**i1*...
        unless self is a generator -- then just return the sum of the two.

        mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x**4 + 2*y
        >>> m = (1, 2)
        >>> p1 = p._iadd_monom((m, 5))
        >>> p1
        x**4 + 5*x*y**2 + 2*y
        >>> p1 is p
        True
        >>> p = x
        >>> p1 = p._iadd_monom((m, 5))
        >>> p1
        5*x*y**2 + x
        >>> p1 is p
        False

        """
        if self in self.ring._gens_set:
            cpself = self.copy()
        else:
            cpself = self
        expv, coeff = mc
        c = cpself.get(expv)
        if c is None:
            cpself[expv] = coeff
        else:
            c += coeff
            if c:
                cpself[expv] = c
            else:
                del cpself[expv]
        return cpself

    def _iadd_poly_monom(self, p2, mc):
        """add to self the product of (p)*(coeff*x0**i0*x1**i1*...)
        unless self is a generator -- then just return the sum of the two.

        mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y, z = ring('x, y, z', ZZ)
        >>> p1 = x**4 + 2*y
        >>> p2 = y + z
        >>> m = (1, 2, 3)
        >>> p1 = p1._iadd_poly_monom(p2, (m, 3))
        >>> p1
        x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y

        """
        p1 = self
        if p1 in p1.ring._gens_set:
            p1 = p1.copy()
        (m, c) = mc
        get = p1.get
        zero = p1.ring.domain.zero
        monomial_mul = p1.ring.monomial_mul
        for k, v in p2.items():
            ka = monomial_mul(k, m)
            coeff = get(ka, zero) + v*c
            if coeff:
                p1[ka] = coeff
            else:
                del p1[ka]
        return p1

    def degree(f, x=None):
        """
        The leading degree in ``x`` or the main variable.

        Note that the degree of 0 is negative infinity (the SymPy object -oo).

        """
        i = f.ring.index(x)

        if not f:
            return -oo
        elif i < 0:
            return 0
        else:
            return max([ monom[i] for monom in f.itermonoms() ])

    def degrees(f):
        """
        A tuple containing leading degrees in all variables.

        Note that the degree of 0 is negative infinity (the SymPy object -oo)

        """
        if not f:
            return (-oo,)*f.ring.ngens
        else:
            return tuple(map(max, list(zip(*f.itermonoms()))))

    def tail_degree(f, x=None):
        """
        The tail degree in ``x`` or the main variable.

        Note that the degree of 0 is negative infinity (the SymPy object -oo)

        """
        i = f.ring.index(x)

        if not f:
            return -oo
        elif i < 0:
            return 0
        else:
            return min([ monom[i] for monom in f.itermonoms() ])

    def tail_degrees(f):
        """
        A tuple containing tail degrees in all variables.

        Note that the degree of 0 is negative infinity (the SymPy object -oo)

        """
        if not f:
            return (-oo,)*f.ring.ngens
        else:
            return tuple(map(min, list(zip(*f.itermonoms()))))

    def leading_expv(self):
        """Leading monomial tuple according to the monomial ordering.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y, z = ring('x, y, z', ZZ)
        >>> p = x**4 + x**3*y + x**2*z**2 + z**7
        >>> p.leading_expv()
        (4, 0, 0)

        """
        if self:
            return self.ring.leading_expv(self)
        else:
            return None

    def _get_coeff(self, expv):
        return self.get(expv, self.ring.domain.zero)

    def coeff(self, element):
        """
        Returns the coefficient that stands next to the given monomial.

        Parameters
        ==========

        element : PolyElement (with ``is_monomial = True``) or 1

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y, z = ring("x,y,z", ZZ)
        >>> f = 3*x**2*y - x*y*z + 7*z**3 + 23

        >>> f.coeff(x**2*y)
        3
        >>> f.coeff(x*y)
        0
        >>> f.coeff(1)
        23

        """
        if element == 1:
            return self._get_coeff(self.ring.zero_monom)
        elif isinstance(element, self.ring.dtype):
            terms = list(element.iterterms())
            if len(terms) == 1:
                monom, coeff = terms[0]
                if coeff == self.ring.domain.one:
                    return self._get_coeff(monom)

        raise ValueError("expected a monomial, got %s" % element)

    def const(self):
        """Returns the constant coeffcient. """
        return self._get_coeff(self.ring.zero_monom)

    @property
    def LC(self):
        return self._get_coeff(self.leading_expv())

    @property
    def LM(self):
        expv = self.leading_expv()
        if expv is None:
            return self.ring.zero_monom
        else:
            return expv

    def leading_monom(self):
        """
        Leading monomial as a polynomial element.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> (3*x*y + y**2).leading_monom()
        x*y

        """
        p = self.ring.zero
        expv = self.leading_expv()
        if expv:
            p[expv] = self.ring.domain.one
        return p

    @property
    def LT(self):
        expv = self.leading_expv()
        if expv is None:
            return (self.ring.zero_monom, self.ring.domain.zero)
        else:
            return (expv, self._get_coeff(expv))

    def leading_term(self):
        """Leading term as a polynomial element.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> (3*x*y + y**2).leading_term()
        3*x*y

        """
        p = self.ring.zero
        expv = self.leading_expv()
        if expv is not None:
            p[expv] = self[expv]
        return p

    def _sorted(self, seq, order):
        if order is None:
            order = self.ring.order
        else:
            order = OrderOpt.preprocess(order)

        if order is lex:
            return sorted(seq, key=lambda monom: monom[0], reverse=True)
        else:
            return sorted(seq, key=lambda monom: order(monom[0]), reverse=True)

    def coeffs(self, order=None):
        """Ordered list of polynomial coefficients.

        Parameters
        ==========

        order : :class:`~.MonomialOrder` or coercible, optional

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.orderings import lex, grlex

        >>> _, x, y = ring("x, y", ZZ, lex)
        >>> f = x*y**7 + 2*x**2*y**3

        >>> f.coeffs()
        [2, 1]
        >>> f.coeffs(grlex)
        [1, 2]

        """
        return [ coeff for _, coeff in self.terms(order) ]

    def monoms(self, order=None):
        """Ordered list of polynomial monomials.

        Parameters
        ==========

        order : :class:`~.MonomialOrder` or coercible, optional

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.orderings import lex, grlex

        >>> _, x, y = ring("x, y", ZZ, lex)
        >>> f = x*y**7 + 2*x**2*y**3

        >>> f.monoms()
        [(2, 3), (1, 7)]
        >>> f.monoms(grlex)
        [(1, 7), (2, 3)]

        """
        return [ monom for monom, _ in self.terms(order) ]

    def terms(self, order=None):
        """Ordered list of polynomial terms.

        Parameters
        ==========

        order : :class:`~.MonomialOrder` or coercible, optional

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.orderings import lex, grlex

        >>> _, x, y = ring("x, y", ZZ, lex)
        >>> f = x*y**7 + 2*x**2*y**3

        >>> f.terms()
        [((2, 3), 2), ((1, 7), 1)]
        >>> f.terms(grlex)
        [((1, 7), 1), ((2, 3), 2)]

        """
        return self._sorted(list(self.items()), order)

    def itercoeffs(self):
        """Iterator over coefficients of a polynomial. """
        return iter(self.values())

    def itermonoms(self):
        """Iterator over monomials of a polynomial. """
        return iter(self.keys())

    def iterterms(self):
        """Iterator over terms of a polynomial. """
        return iter(self.items())

    def listcoeffs(self):
        """Unordered list of polynomial coefficients. """
        return list(self.values())

    def listmonoms(self):
        """Unordered list of polynomial monomials. """
        return list(self.keys())

    def listterms(self):
        """Unordered list of polynomial terms. """
        return list(self.items())

    def imul_num(p, c):
        """multiply inplace the polynomial p by an element in the
        coefficient ring, provided p is not one of the generators;
        else multiply not inplace

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring('x, y', ZZ)
        >>> p = x + y**2
        >>> p1 = p.imul_num(3)
        >>> p1
        3*x + 3*y**2
        >>> p1 is p
        True
        >>> p = x
        >>> p1 = p.imul_num(3)
        >>> p1
        3*x
        >>> p1 is p
        False

        """
        if p in p.ring._gens_set:
            return p*c
        if not c:
            p.clear()
            return
        for exp in p:
            p[exp] *= c
        return p

    def content(f):
        """Returns GCD of polynomial's coefficients. """
        domain = f.ring.domain
        cont = domain.zero
        gcd = domain.gcd

        for coeff in f.itercoeffs():
            cont = gcd(cont, coeff)

        return cont

    def primitive(f):
        """Returns content and a primitive polynomial. """
        cont = f.content()
        return cont, f.quo_ground(cont)

    def monic(f):
        """Divides all coefficients by the leading coefficient. """
        if not f:
            return f
        else:
            return f.quo_ground(f.LC)

    def mul_ground(f, x):
        if not x:
            return f.ring.zero

        terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ]
        return f.new(terms)

    def mul_monom(f, monom):
        monomial_mul = f.ring.monomial_mul
        terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ]
        return f.new(terms)

    def mul_term(f, term):
        monom, coeff = term

        if not f or not coeff:
            return f.ring.zero
        elif monom == f.ring.zero_monom:
            return f.mul_ground(coeff)

        monomial_mul = f.ring.monomial_mul
        terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ]
        return f.new(terms)

    def quo_ground(f, x):
        domain = f.ring.domain

        if not x:
            raise ZeroDivisionError('polynomial division')
        if not f or x == domain.one:
            return f

        if domain.is_Field:
            quo = domain.quo
            terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ]
        else:
            terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ]

        return f.new(terms)

    def quo_term(f, term):
        monom, coeff = term

        if not coeff:
            raise ZeroDivisionError("polynomial division")
        elif not f:
            return f.ring.zero
        elif monom == f.ring.zero_monom:
            return f.quo_ground(coeff)

        term_div = f._term_div()

        terms = [ term_div(t, term) for t in f.iterterms() ]
        return f.new([ t for t in terms if t is not None ])

    def trunc_ground(f, p):
        if f.ring.domain.is_ZZ:
            terms = []

            for monom, coeff in f.iterterms():
                coeff = coeff % p

                if coeff > p // 2:
                    coeff = coeff - p

                terms.append((monom, coeff))
        else:
            terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ]

        poly = f.new(terms)
        poly.strip_zero()
        return poly

    rem_ground = trunc_ground

    def extract_ground(self, g):
        f = self
        fc = f.content()
        gc = g.content()

        gcd = f.ring.domain.gcd(fc, gc)

        f = f.quo_ground(gcd)
        g = g.quo_ground(gcd)

        return gcd, f, g

    def _norm(f, norm_func):
        if not f:
            return f.ring.domain.zero
        else:
            ground_abs = f.ring.domain.abs
            return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ])

    def max_norm(f):
        return f._norm(max)

    def l1_norm(f):
        return f._norm(sum)

    def deflate(f, *G):
        ring = f.ring
        polys = [f] + list(G)

        J = [0]*ring.ngens

        for p in polys:
            for monom in p.itermonoms():
                for i, m in enumerate(monom):
                    J[i] = igcd(J[i], m)

        for i, b in enumerate(J):
            if not b:
                J[i] = 1

        J = tuple(J)

        if all(b == 1 for b in J):
            return J, polys

        H = []

        for p in polys:
            h = ring.zero

            for I, coeff in p.iterterms():
                N = [ i // j for i, j in zip(I, J) ]
                h[tuple(N)] = coeff

            H.append(h)

        return J, H

    def inflate(f, J):
        poly = f.ring.zero

        for I, coeff in f.iterterms():
            N = [ i*j for i, j in zip(I, J) ]
            poly[tuple(N)] = coeff

        return poly

    def lcm(self, g):
        f = self
        domain = f.ring.domain

        if not domain.is_Field:
            fc, f = f.primitive()
            gc, g = g.primitive()
            c = domain.lcm(fc, gc)

        h = (f*g).quo(f.gcd(g))

        if not domain.is_Field:
            return h.mul_ground(c)
        else:
            return h.monic()

    def gcd(f, g):
        return f.cofactors(g)[0]

    def cofactors(f, g):
        if not f and not g:
            zero = f.ring.zero
            return zero, zero, zero
        elif not f:
            h, cff, cfg = f._gcd_zero(g)
            return h, cff, cfg
        elif not g:
            h, cfg, cff = g._gcd_zero(f)
            return h, cff, cfg
        elif len(f) == 1:
            h, cff, cfg = f._gcd_monom(g)
            return h, cff, cfg
        elif len(g) == 1:
            h, cfg, cff = g._gcd_monom(f)
            return h, cff, cfg

        J, (f, g) = f.deflate(g)
        h, cff, cfg = f._gcd(g)

        return (h.inflate(J), cff.inflate(J), cfg.inflate(J))

    def _gcd_zero(f, g):
        one, zero = f.ring.one, f.ring.zero
        if g.is_nonnegative:
            return g, zero, one
        else:
            return -g, zero, -one

    def _gcd_monom(f, g):
        ring = f.ring
        ground_gcd = ring.domain.gcd
        ground_quo = ring.domain.quo
        monomial_gcd = ring.monomial_gcd
        monomial_ldiv = ring.monomial_ldiv
        mf, cf = list(f.iterterms())[0]
        _mgcd, _cgcd = mf, cf
        for mg, cg in g.iterterms():
            _mgcd = monomial_gcd(_mgcd, mg)
            _cgcd = ground_gcd(_cgcd, cg)
        h = f.new([(_mgcd, _cgcd)])
        cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))])
        cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()])
        return h, cff, cfg

    def _gcd(f, g):
        ring = f.ring

        if ring.domain.is_QQ:
            return f._gcd_QQ(g)
        elif ring.domain.is_ZZ:
            return f._gcd_ZZ(g)
        else: # TODO: don't use dense representation (port PRS algorithms)
            return ring.dmp_inner_gcd(f, g)

    def _gcd_ZZ(f, g):
        return heugcd(f, g)

    def _gcd_QQ(self, g):
        f = self
        ring = f.ring
        new_ring = ring.clone(domain=ring.domain.get_ring())

        cf, f = f.clear_denoms()
        cg, g = g.clear_denoms()

        f = f.set_ring(new_ring)
        g = g.set_ring(new_ring)

        h, cff, cfg = f._gcd_ZZ(g)

        h = h.set_ring(ring)
        c, h = h.LC, h.monic()

        cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf))
        cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg))

        return h, cff, cfg

    def cancel(self, g):
        """
        Cancel common factors in a rational function ``f/g``.

        Examples
        ========

        >>> from sympy.polys import ring, ZZ
        >>> R, x,y = ring("x,y", ZZ)

        >>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
        (2*x + 2, x - 1)

        """
        f = self
        ring = f.ring

        if not f:
            return f, ring.one

        domain = ring.domain

        if not (domain.is_Field and domain.has_assoc_Ring):
            _, p, q = f.cofactors(g)
        else:
            new_ring = ring.clone(domain=domain.get_ring())

            cq, f = f.clear_denoms()
            cp, g = g.clear_denoms()

            f = f.set_ring(new_ring)
            g = g.set_ring(new_ring)

            _, p, q = f.cofactors(g)
            _, cp, cq = new_ring.domain.cofactors(cp, cq)

            p = p.set_ring(ring)
            q = q.set_ring(ring)

            p = p.mul_ground(cp)
            q = q.mul_ground(cq)

        # Make canonical with respect to sign or quadrant in the case of ZZ_I
        # or QQ_I. This ensures that the LC of the denominator is canonical by
        # multiplying top and bottom by a unit of the ring.
        u = q.canonical_unit()
        if u == domain.one:
            p, q = p, q
        elif u == -domain.one:
            p, q = -p, -q
        else:
            p = p.mul_ground(u)
            q = q.mul_ground(u)

        return p, q

    def canonical_unit(f):
        domain = f.ring.domain
        return domain.canonical_unit(f.LC)

    def diff(f, x):
        """Computes partial derivative in ``x``.

        Examples
        ========

        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.domains import ZZ

        >>> _, x, y = ring("x,y", ZZ)
        >>> p = x + x**2*y**3
        >>> p.diff(x)
        2*x*y**3 + 1

        """
        ring = f.ring
        i = ring.index(x)
        m = ring.monomial_basis(i)
        g = ring.zero
        for expv, coeff in f.iterterms():
            if expv[i]:
                e = ring.monomial_ldiv(expv, m)
                g[e] = ring.domain_new(coeff*expv[i])
        return g

    def __call__(f, *values):
        if 0 < len(values) <= f.ring.ngens:
            return f.evaluate(list(zip(f.ring.gens, values)))
        else:
            raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values)))

    def evaluate(self, x, a=None):
        f = self

        if isinstance(x, list) and a is None:
            (X, a), x = x[0], x[1:]
            f = f.evaluate(X, a)

            if not x:
                return f
            else:
                x = [ (Y.drop(X), a) for (Y, a) in x ]
                return f.evaluate(x)

        ring = f.ring
        i = ring.index(x)
        a = ring.domain.convert(a)

        if ring.ngens == 1:
            result = ring.domain.zero

            for (n,), coeff in f.iterterms():
                result += coeff*a**n

            return result
        else:
            poly = ring.drop(x).zero

            for monom, coeff in f.iterterms():
                n, monom = monom[i], monom[:i] + monom[i+1:]
                coeff = coeff*a**n

                if monom in poly:
                    coeff = coeff + poly[monom]

                    if coeff:
                        poly[monom] = coeff
                    else:
                        del poly[monom]
                else:
                    if coeff:
                        poly[monom] = coeff

            return poly

    def subs(self, x, a=None):
        f = self

        if isinstance(x, list) and a is None:
            for X, a in x:
                f = f.subs(X, a)
            return f

        ring = f.ring
        i = ring.index(x)
        a = ring.domain.convert(a)

        if ring.ngens == 1:
            result = ring.domain.zero

            for (n,), coeff in f.iterterms():
                result += coeff*a**n

            return ring.ground_new(result)
        else:
            poly = ring.zero

            for monom, coeff in f.iterterms():
                n, monom = monom[i], monom[:i] + (0,) + monom[i+1:]
                coeff = coeff*a**n

                if monom in poly:
                    coeff = coeff + poly[monom]

                    if coeff:
                        poly[monom] = coeff
                    else:
                        del poly[monom]
                else:
                    if coeff:
                        poly[monom] = coeff

            return poly

    def compose(f, x, a=None):
        ring = f.ring
        poly = ring.zero
        gens_map = dict(list(zip(ring.gens, list(range(ring.ngens)))))

        if a is not None:
            replacements = [(x, a)]
        else:
            if isinstance(x, list):
                replacements = list(x)
            elif isinstance(x, dict):
                replacements = sorted(list(x.items()), key=lambda k: gens_map[k[0]])
            else:
                raise ValueError("expected a generator, value pair a sequence of such pairs")

        for k, (x, g) in enumerate(replacements):
            replacements[k] = (gens_map[x], ring.ring_new(g))

        for monom, coeff in f.iterterms():
            monom = list(monom)
            subpoly = ring.one

            for i, g in replacements:
                n, monom[i] = monom[i], 0
                if n:
                    subpoly *= g**n

            subpoly = subpoly.mul_term((tuple(monom), coeff))
            poly += subpoly

        return poly

    # TODO: following methods should point to polynomial
    # representation independent algorithm implementations.

    def pdiv(f, g):
        return f.ring.dmp_pdiv(f, g)

    def prem(f, g):
        return f.ring.dmp_prem(f, g)

    def pquo(f, g):
        return f.ring.dmp_quo(f, g)

    def pexquo(f, g):
        return f.ring.dmp_exquo(f, g)

    def half_gcdex(f, g):
        return f.ring.dmp_half_gcdex(f, g)

    def gcdex(f, g):
        return f.ring.dmp_gcdex(f, g)

    def subresultants(f, g):
        return f.ring.dmp_subresultants(f, g)

    def resultant(f, g):
        return f.ring.dmp_resultant(f, g)

    def discriminant(f):
        return f.ring.dmp_discriminant(f)

    def decompose(f):
        if f.ring.is_univariate:
            return f.ring.dup_decompose(f)
        else:
            raise MultivariatePolynomialError("polynomial decomposition")

    def shift(f, a):
        if f.ring.is_univariate:
            return f.ring.dup_shift(f, a)
        else:
            raise MultivariatePolynomialError("polynomial shift")

    def sturm(f):
        if f.ring.is_univariate:
            return f.ring.dup_sturm(f)
        else:
            raise MultivariatePolynomialError("sturm sequence")

    def gff_list(f):
        return f.ring.dmp_gff_list(f)

    def sqf_norm(f):
        return f.ring.dmp_sqf_norm(f)

    def sqf_part(f):
        return f.ring.dmp_sqf_part(f)

    def sqf_list(f, all=False):
        return f.ring.dmp_sqf_list(f, all=all)

    def factor_list(f):
        return f.ring.dmp_factor_list(f)
