o
    8Va                      @   sF   d dl mZmZmZmZmZmZ d dlmZ dgZ	G dd deZ
dS )    )Body
LagrangianKanesMethodLagrangesMethod	RigidBodyParticle)_MethodsJointsMethodc                   @   s   e Zd ZdZdd Zedd Zedd Zedd	 Zed
d Z	edd Z
edd Zedd Zedd Zedd Zedd Zdd Zdd Zdd Zdd Zd d! Zd"d# Zefd$d%Zd)d'd(Zd&S )*r	   a%  Method for formulating the equations of motion using a set of interconnected bodies with joints.

    Parameters
    ==========

    newtonion : Body or ReferenceFrame
        The newtonion(inertial) frame.
    *joints : Joint
        The joints in the system

    Attributes
    ==========

    q, u : iterable
        Iterable of the generalized coordinates and speeds
    bodies : iterable
        Iterable of Body objects in the system.
    loads : iterable
        Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
        describing the forces on the system.
    mass_matrix : Matrix, shape(n, n)
        The system's mass matrix
    forcing : Matrix, shape(n, 1)
        The system's forcing vector
    mass_matrix_full : Matrix, shape(2*n, 2*n)
        The "mass matrix" for the u's and q's
    forcing_full : Matrix, shape(2*n, 1)
        The "forcing vector" for the u's and q's
    method : KanesMethod or Lagrange's method
        Method's object.
    kdes : iterable
        Iterable of kde in they system.

    Examples
    ========

    This is a simple example for a one degree of freedom translational
    spring-mass-damper.

    >>> from sympy import symbols
    >>> from sympy.physics.mechanics import Body, JointsMethod, PrismaticJoint
    >>> from sympy.physics.vector import dynamicsymbols
    >>> c, k = symbols('c k')
    >>> x, v = dynamicsymbols('x v')
    >>> wall = Body('W')
    >>> body = Body('B')
    >>> J = PrismaticJoint('J', wall, body, coordinates=x, speeds=v)
    >>> wall.apply_force(c*v*wall.x, reaction_body=body)
    >>> wall.apply_force(k*x*wall.x, reaction_body=body)
    >>> method = JointsMethod(wall, J)
    >>> method.form_eoms()
    Matrix([[-B_mass*Derivative(v(t), t) - c*v(t) - k*x(t)]])
    >>> M = method.mass_matrix_full
    >>> F = method.forcing_full
    >>> rhs = M.LUsolve(F)
    >>> rhs
    Matrix([
    [                     v(t)],
    [(-c*v(t) - k*x(t))/B_mass]])

    Notes
    =====

    ``JointsMethod`` currently only works with systems that do not have any
    configuration or motion constraints.

    c                 G   s\   t |tr
|j| _n|| _|| _|  | _|  | _|  | _	| 
 | _|  | _d | _d S N)
isinstancer   frame_joints_generate_bodylist_bodies_generate_loadlist_loads_generate_q_q_generate_u_u_generate_kdes_kdes_method)selfZ	newtonionZjoints r   F/usr/lib/python3/dist-packages/sympy/physics/mechanics/jointsmethod.py__init__M   s   







zJointsMethod.__init__c                 C      | j S )zList of bodies in they system.)r   r   r   r   r   bodies\      zJointsMethod.bodiesc                 C   r   )zList of loads on the system.)r   r   r   r   r   loadsa   r    zJointsMethod.loadsc                 C   r   z$List of the generalized coordinates.)r   r   r   r   r   qf   r    zJointsMethod.qc                 C   r   )zList of the generalized speeds.)r   r   r   r   r   uk   r    zJointsMethod.uc                 C   r   r"   )r   r   r   r   r   kdesp   r    zJointsMethod.kdesc                 C      | j jS )z)The "forcing vector" for the u's and q's.)methodforcing_fullr   r   r   r   r(   u      zJointsMethod.forcing_fullc                 C   r&   )z&The "mass matrix" for the u's and q's.)r'   mass_matrix_fullr   r   r   r   r*   z   r)   zJointsMethod.mass_matrix_fullc                 C   r&   )zThe system's mass matrix.)r'   mass_matrixr   r   r   r   r+      r)   zJointsMethod.mass_matrixc                 C   r&   )zThe system's forcing vector.)r'   forcingr   r   r   r   r,      r)   zJointsMethod.forcingc                 C   r   )z3Object of method used to form equations of systems.)r   r   r   r   r   r'      r    zJointsMethod.methodc                 C   s@   g }| j D ]}|j|vr||j |j|vr||j q|S r
   )r   childappendparent)r   r   jointr   r   r   r      s   


zJointsMethod._generate_bodylistc                 C       g }| j D ]}||j q|S r
   )r   extendr!   )r   Z	load_listbodyr   r   r   r         
zJointsMethod._generate_loadlistc                 C   :   g }| j D ]}|jD ]}||v rtd|| q
q|S )Nz'Coordinates of joints should be unique.)r   Zcoordinates
ValueErrorr.   )r   q_indr0   Z
coordinater   r   r   r         

zJointsMethod._generate_qc                 C   r5   )Nz"Speeds of joints should be unique.)r   Zspeedsr6   r.   )r   u_indr0   Zspeedr   r   r   r      r8   zJointsMethod._generate_uc                 C   r1   r
   )r   r2   r%   )r   Zkd_indr0   r   r   r   r      r4   zJointsMethod._generate_kdesc                 C   sr   g }| j D ]1}|jr$t|j|j|j|j|j|jf}|j|_|	| qt
|j|j|j}|j|_|	| q|S r
   )r   Zis_rigidbodyr   nameZ
masscenterr   ZmassZcentral_inertiaZpotential_energyr.   r   )r   bodylistr3   rbpartr   r   r   _convert_bodies   s   

zJointsMethod._convert_bodiesc                 C   sl   |   }t|trt| jg|R  }||| j| j|| j| _n|| j| j| j| j	| j|d| _| j
 }|S )a7  Method to form system's equation of motions.

        Parameters
        ==========

        method : Class
            Class name of method.

        Returns
        ========

        Matrix
            Vector of equations of motions.

        Examples
        ========

        This is a simple example for a one degree of freedom translational
        spring-mass-damper.

        >>> from sympy import S, symbols
        >>> from sympy.physics.mechanics import LagrangesMethod, dynamicsymbols, Body
        >>> from sympy.physics.mechanics import PrismaticJoint, JointsMethod
        >>> q = dynamicsymbols('q')
        >>> qd = dynamicsymbols('q', 1)
        >>> m, k, b = symbols('m k b')
        >>> wall = Body('W')
        >>> part = Body('P', mass=m)
        >>> part.potential_energy = k * q**2 / S(2)
        >>> J = PrismaticJoint('J', wall, part, coordinates=q, speeds=qd)
        >>> wall.apply_force(b * qd * wall.x, reaction_body=part)
        >>> method = JointsMethod(wall, J)
        >>> method.form_eoms(LagrangesMethod)
        Matrix([[b*Derivative(q(t), t) + k*q(t) + m*Derivative(q(t), (t, 2))]])

        We can also solve for the states using the 'rhs' method.

        >>> method.rhs()
        Matrix([
        [                Derivative(q(t), t)],
        [(-b*Derivative(q(t), t) - k*q(t))/m]])

        )r7   r9   Zkd_eqsZ	forcelistr   )r>   
issubclassr   r   r   r#   r!   r   r$   r%   r'   Z
_form_eoms)r   r'   r;   LZsolnr   r   r   	form_eoms   s   -

zJointsMethod.form_eomsNc                 C   s   | j j|dS )ao  Returns equations that can be solved numerically.

        Parameters
        ==========

        inv_method : str
            The specific sympy inverse matrix calculation method to use. For a
            list of valid methods, see
            :meth:`~sympy.matrices.matrices.MatrixBase.inv`

        Returns
        ========

        Matrix
            Numerically solveable equations.

        See Also
        ========

        sympy.physics.mechanics.KanesMethod.rhs():
            KanesMethod's rhs function.
        sympy.physics.mechanics.LagrangesMethod.rhs():
            LagrangesMethod's rhs function.

        )
inv_method)r'   rhs)r   rB   r   r   r   rC      s   zJointsMethod.rhsr
   )__name__
__module____qualname____doc__r   propertyr   r!   r#   r$   r%   r(   r*   r+   r,   r'   r   r   r   r   r   r>   r   rA   rC   r   r   r   r   r	      s>    D









			7N)Zsympy.physics.mechanicsr   r   r   r   r   r   Zsympy.physics.mechanics.methodr   __all__r	   r   r   r   r   <module>   s     