o
    8Va                     @   st   d dl mZ d dlmZ d dlmZmZmZ d dlm	Z	 G dd deZ
G dd deZG d	d
 d
eZdd ZdS )    )_sympify)
MatrixExpr)SEqGe)KroneckerDeltac                   @   s<   e Zd ZdZedd Zedd Zedd Zdd Zd	S )
DiagonalMatrixa  DiagonalMatrix(M) will create a matrix expression that
    behaves as though all off-diagonal elements,
    `M[i, j]` where `i != j`, are zero.

    Examples
    ========

    >>> from sympy import MatrixSymbol, DiagonalMatrix, Symbol
    >>> n = Symbol('n', integer=True)
    >>> m = Symbol('m', integer=True)
    >>> D = DiagonalMatrix(MatrixSymbol('x', 2, 3))
    >>> D[1, 2]
    0
    >>> D[1, 1]
    x[1, 1]

    The length of the diagonal -- the lesser of the two dimensions of `M` --
    is accessed through the `diagonal_length` property:

    >>> D.diagonal_length
    2
    >>> DiagonalMatrix(MatrixSymbol('x', n + 1, n)).diagonal_length
    n

    When one of the dimensions is symbolic the other will be treated as
    though it is smaller:

    >>> tall = DiagonalMatrix(MatrixSymbol('x', n, 3))
    >>> tall.diagonal_length
    3
    >>> tall[10, 1]
    0

    When the size of the diagonal is not known, a value of None will
    be returned:

    >>> DiagonalMatrix(MatrixSymbol('x', n, m)).diagonal_length is None
    True

    c                 C   
   | j d S Nr   argsself r   E/usr/lib/python3/dist-packages/sympy/matrices/expressions/diagonal.py<lambda>1      
 zDiagonalMatrix.<lambda>c                 C   s   | j jS N)argshaper   r   r   r   r   3   s    c                 C   s   | j \}}|jr|jrt||}|S |jr|js|}|S |jr&|js&|}|S ||kr.|}|S zt||}W |S  tyB   d }Y |S w r   )r   
is_Integermin	TypeErrorr   rcmr   r   r   diagonal_length5   s(   


zDiagonalMatrix.diagonal_lengthc                 K   s   | j d urt|| j tju rtjS t|| j tju rtjS t||}|tju r.| j||f S |tju r6tjS | j||f t|| S r   )	r   r   r   trueZZeror   r   Zfalser   )r   ijkwargseqr   r   r   _entryG   s   



zDiagonalMatrix._entryN	__name__
__module____qualname____doc__propertyr   r   r   r#   r   r   r   r   r      s    (
r   c                   @   s<   e Zd ZdZedd Zedd Zedd Zdd	 Zd
S )
DiagonalOfa  DiagonalOf(M) will create a matrix expression that
    is equivalent to the diagonal of `M`, represented as
    a single column matrix.

    Examples
    ========

    >>> from sympy import MatrixSymbol, DiagonalOf, Symbol
    >>> n = Symbol('n', integer=True)
    >>> m = Symbol('m', integer=True)
    >>> x = MatrixSymbol('x', 2, 3)
    >>> diag = DiagonalOf(x)
    >>> diag.shape
    (2, 1)

    The diagonal can be addressed like a matrix or vector and will
    return the corresponding element of the original matrix:

    >>> diag[1, 0] == diag[1] == x[1, 1]
    True

    The length of the diagonal -- the lesser of the two dimensions of `M` --
    is accessed through the `diagonal_length` property:

    >>> diag.diagonal_length
    2
    >>> DiagonalOf(MatrixSymbol('x', n + 1, n)).diagonal_length
    n

    When only one of the dimensions is symbolic the other will be
    treated as though it is smaller:

    >>> dtall = DiagonalOf(MatrixSymbol('x', n, 3))
    >>> dtall.diagonal_length
    3

    When the size of the diagonal is not known, a value of None will
    be returned:

    >>> DiagonalOf(MatrixSymbol('x', n, m)).diagonal_length is None
    True

    c                 C   r	   r
   r   r   r   r   r   r      r   zDiagonalOf.<lambda>c                 C   s   | j j\}}|jr|jrt||}n,|jr|js|}n#|jr$|js$|}n||kr+|}nzt||}W n ty=   d }Y nw |tjfS r   )r   r   r   r   r   r   ZOner   r   r   r   r      s   
zDiagonalOf.shapec                 C   r	   r
   )r   r   r   r   r   r      s   
zDiagonalOf.diagonal_lengthc                 K   s   | j j||fi |S r   )r   r#   )r   r   r    r!   r   r   r   r#      s   zDiagonalOf._entryNr$   r   r   r   r   r*   U   s    +

r*   c                   @   sD   e Zd ZdZdd Zedd Zdd Zdd	 Zd
d Z	dd Z
dS )
DiagMatrixz/
    Turn a vector into a diagonal matrix.
    c                 C   sf   t |}t| |}|j}|d dkr|d n|d }|jd dkr&d|_nd|_||f|_||_|S )Nr      TF)r   r   __new__r   	_iscolumn_shape_vector)clsvectorobjr   Zdimr   r   r   r-      s   
zDiagMatrix.__new__c                 C   s   | j S r   )r/   r   r   r   r   r      s   zDiagMatrix.shapec                 K   sN   | j r| jj|dfi |}n| jjd|fi |}||kr%|t||9 }|S r
   )r.   r0   r#   r   )r   r   r    r!   resultr   r   r   r#      s   zDiagMatrix._entryc                 C   s   | S r   r   r   r   r   r   _eval_transpose   s   zDiagMatrix._eval_transposec                 C   s   ddl m} |t| j  S )Nr   )diag)sympyr6   listr0   as_explicit)r   r6   r   r   r   r9      s   zDiagMatrix.as_explicitc                    s   ddl m}m} ddlm}m}m} ddlm}m} | j	}	||
|	r&|	S t|	|rJ|t|	j}
t|
jd D ]
}|	| |
||f< q9t|	|
S |	jrqdd |	jD   fdd|	jD }|rq||t|    S t|	|ry|	j}	t|	S )Nr   )askQ)	TransposeMulMatMul)
MatrixBaseeyec                 S   s   g | ]}|j r|qS r   )Z	is_Matrix.0r   r   r   r   
<listcomp>   s    z#DiagMatrix.doit.<locals>.<listcomp>c                    s   g | ]}| vr|qS r   r   rA   Zmatricesr   r   rC      s    )Zsympy.assumptionsr:   r;   r7   r<   r=   r>   r?   r@   r0   Zdiagonal
isinstancemaxr   rangetypeZ	is_MatMulr   Zfromiterr+   doitr   )r   Zhintsr:   r;   r<   r=   r>   r?   r@   r2   retr   Zscalarsr   rD   r   rI      s&   
 
zDiagMatrix.doitN)r%   r&   r'   r(   r-   r)   r   r#   r5   r9   rI   r   r   r   r   r+      s    
	r+   c                 C   s   t |  S r   )r+   rI   )r2   r   r   r   diagonalize_vector   s   rK   N)Zsympy.core.sympifyr   Zsympy.matrices.expressionsr   Z
sympy.corer   r   r   Z(sympy.functions.special.tensor_functionsr   r   r*   r+   rK   r   r   r   r   <module>   s    MG<