o
    à8Va·  ã                   @   sn   d Z ddlmZmZmZ ddlmZ ddlmZm	Z	m
Z
 ddlmZ ddlmZ ddd	„Zd
d„ Zdd„ ZdS )z1Gosper's algorithm for hypergeometric summation. é    )ÚSÚDummyÚsymbols)Úis_sequence)ÚPolyÚparallel_poly_from_exprÚfactor)Úsolve)Ú	hypersimpTc                 C   sD  t | |f|ddd\\}}}| ¡ | ¡ }}| ¡ | ¡ }	}
|j||	 }}tdƒ}t|| |||jd}| |
 |¡¡}t	| 
¡  ¡ ƒ}t	|ƒD ]}|jrT|dk rY| |¡ qKt|ƒD ]+}| |
 |
 ¡¡}| |¡}|
 | | ¡¡}
td|d ƒD ]
}|| | ¡9 }q~q^| |¡}|s| ¡ }|
 ¡ }
| ¡ }||
|fS )a`  
    Compute the Gosper's normal form of ``f`` and ``g``.

    Explanation
    ===========

    Given relatively prime univariate polynomials ``f`` and ``g``,
    rewrite their quotient to a normal form defined as follows:

    .. math::
        \frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}

    where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are
    monic polynomials in ``n`` with the following properties:

    1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}`
    2. `\gcd(B(n), C(n+1)) = 1`
    3. `\gcd(A(n), C(n)) = 1`

    This normal form, or rational factorization in other words, is a
    crucial step in Gosper's algorithm and in solving of difference
    equations. It can be also used to decide if two hypergeometric
    terms are similar or not.

    This procedure will return a tuple containing elements of this
    factorization in the form ``(Z*A, B, C)``.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_normal
    >>> from sympy.abc import n

    >>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
    (1/4, n + 3/2, n + 1/4)

    T)ZfieldÚ	extensionÚh©Údomainr   é   )r   ÚLCZmonicZoner   r   r   Z	resultantZcomposeÚsetZground_rootsÚkeysÚ
is_IntegerÚremoveÚsortedZgcdÚshiftZquoÚrangeZ
mul_groundÚas_expr)ÚfÚgÚnZpolysÚpÚqZoptÚaÚAÚbÚBÚCÚZr   ÚDÚRÚrootsÚrÚiÚdÚj© r+   ú7/usr/lib/python3/dist-packages/sympy/concrete/gosper.pyÚgosper_normal
   s6   &ÿ
€
ÿ

r-   c                 C   s¸  t | |ƒ}|du rdS | ¡ \}}t|||ƒ\}}}| d¡}t| ¡ ƒ}t| ¡ ƒ}	t| ¡ ƒ}
||	ks=| ¡ | ¡ krF|
t||	ƒ h}n$|sR|
| d tjh}n|
| d | 	|d ¡| 	|d ¡ | ¡  h}t
|ƒD ]}|jrw|dk r|| |¡ qn|sdS t|ƒ}td|d  td}| ¡ j|Ž }t|||d}|| d¡ ||  | }t| ¡ |ƒ}|du r·dS | ¡  |¡}|D ]}||vrÌ| |d¡}qÀ|jrÒdS | ¡ | | ¡  S )a/  
    Compute Gosper's hypergeometric term for ``f``.

    Explanation
    ===========

    Suppose ``f`` is a hypergeometric term such that:

    .. math::
        s_n = \sum_{k=0}^{n-1} f_k

    and `f_k` doesn't depend on `n`. Returns a hypergeometric
    term `g_n` such that `g_{n+1} - g_n = f_n`.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_term
    >>> from sympy.functions import factorial
    >>> from sympy.abc import n

    >>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
    (-n - 1/2)/(n + 1/4)

    Néÿÿÿÿr   r   zc:%s)Úclsr   )r
   Zas_numer_denomr-   r   r   Zdegreer   ÚmaxZZeroZnthr   r   r   r   r   Z
get_domainZinjectr   r	   Úcoeffsr   ÚsubsZis_zero)r   r   r'   r   r   r   r!   r"   ÚNÚMÚKr$   r)   r1   r   ÚxÚHZsolutionZcoeffr+   r+   r,   Úgosper_termU   sH   

0
€€r8   c                 C   sÈ   d}t |ƒr|\}}}nd}t| |ƒ}|du rdS |r#| | }t|ƒS | |d   ||¡| |  ||¡ }|tju r`z| |d   ||¡| |  ||¡ }W t|ƒS  ty_   d}Y t|ƒS w t|ƒS )aL  
    Gosper's hypergeometric summation algorithm.

    Explanation
    ===========

    Given a hypergeometric term ``f`` such that:

    .. math ::
        s_n = \sum_{k=0}^{n-1} f_k

    and `f(n)` doesn't depend on `n`, returns `g_{n} - g(0)` where
    `g_{n+1} - g_n = f_n`, or ``None`` if `s_n` can not be expressed
    in closed form as a sum of hypergeometric terms.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_sum
    >>> from sympy.functions import factorial
    >>> from sympy.abc import n, k

    >>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
    >>> gosper_sum(f, (k, 0, n))
    (-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
    >>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
    True
    >>> gosper_sum(f, (k, 3, n))
    (-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
    >>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
    True

    References
    ==========

    .. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
           AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100

    FTNr   )r   r8   r2   r   ZNaNÚlimitÚNotImplementedErrorr   )r   ÚkZ
indefiniter   r    r   Úresultr+   r+   r,   Ú
gosper_sum¤   s(   (

$ø
&ýýr=   N)T)Ú__doc__Z
sympy.corer   r   r   Zsympy.core.compatibilityr   Zsympy.polysr   r   r   Zsympy.solversr	   Zsympy.simplifyr
   r-   r8   r=   r+   r+   r+   r,   Ú<module>   s    
KO