o
    8Va*.                     @   s@  d Z ddlmZmZ ddlmZ ddlmZ ddlm	Z	 ddl
mZmZ ddlmZ dd	 ZG d
d deZdd ZG dd deZe	dZdd ZG dd deZdd ZG dd deZdd ZG dd deZe	dZdd ZG d d! d!eZd"d# ZG d$d% d%eZd&d' ZG d(d) d)eZ d*d+ Z!G d,d- d-eZ"d.S )/a#  
This module contains SymPy functions mathcin corresponding to special math functions in the
C standard library (since C99, also available in C++11).

The functions defined in this module allows the user to express functions such as ``expm1``
as a SymPy function for symbolic manipulation.

    )ArgumentIndexErrorFunction)Rational)Pow)S)explog)sqrtc                 C   s   t | tj S Nr   r   Onex r   :/usr/lib/python3/dist-packages/sympy/codegen/cfunctions.py_expm1      r   c                   @   sN   e Zd ZdZdZdddZdd Zdd ZeZe	d	d
 Z
dd Zdd ZdS )expm1a*  
    Represents the exponential function minus one.

    Explanation
    ===========

    The benefit of using ``expm1(x)`` over ``exp(x) - 1``
    is that the latter is prone to cancellation under finite precision
    arithmetic when x is close to zero.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import expm1
    >>> '%.0e' % expm1(1e-99).evalf()
    '1e-99'
    >>> from math import exp
    >>> exp(1e-99) - 1
    0.0
    >>> expm1(x).diff(x)
    exp(x)

    See Also
    ========

    log1p
       c                 C   s   |dkr	t | j S t| |@
        Returns the first derivative of this function.
        r   )r   argsr   selfZargindexr   r   r   fdiff4   s   

zexpm1.fdiffc                 K   
   t | j S r
   )r   r   r   Zhintsr   r   r   _eval_expand_func=      
zexpm1._eval_expand_funcc                 K   s   t |tj S r
   r   r   argkwargsr   r   r   _eval_rewrite_as_exp@   r   zexpm1._eval_rewrite_as_expc                 C   s    t |}|d ur|tj S d S r
   )r   evalr   r   )clsr    Zexp_argr   r   r   r#   E   s   

z
expm1.evalc                 C      | j d jS Nr   )r   Zis_realr   r   r   r   _eval_is_realK      zexpm1._eval_is_realc                 C   r%   r&   )r   	is_finiter'   r   r   r   _eval_is_finiteN   r)   zexpm1._eval_is_finiteNr   )__name__
__module____qualname____doc__nargsr   r   r"   _eval_rewrite_as_tractableclassmethodr#   r(   r+   r   r   r   r   r      s    
	
r   c                 C   s   t | tj S r
   )r   r   r   r   r   r   r   _log1pR   r   r4   c                   @   sf   e Zd ZdZdZdddZdd Zdd ZeZe	d	d
 Z
dd Zdd Zdd Zdd Zdd ZdS )log1pat  
    Represents the natural logarithm of a number plus one.

    Explanation
    ===========

    The benefit of using ``log1p(x)`` over ``log(x + 1)``
    is that the latter is prone to cancellation under finite precision
    arithmetic when x is close to zero.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log1p
    >>> from sympy.core.function import expand_log
    >>> '%.0e' % expand_log(log1p(1e-99)).evalf()
    '1e-99'
    >>> from math import log
    >>> log(1 + 1e-99)
    0.0
    >>> log1p(x).diff(x)
    1/(x + 1)

    See Also
    ========

    expm1
    r   c                 C   s(   |dkrt j| jd t j  S t| |r   r   r   )r   r   r   r   r   r   r   r   r   w   s   
zlog1p.fdiffc                 K   r   r
   )r4   r   r   r   r   r   r      r   zlog1p._eval_expand_funcc                 K      t |S r
   )r4   r   r   r   r   _eval_rewrite_as_log      zlog1p._eval_rewrite_as_logc                 C   sF   |j r
t|tj S |jst|tj S |jr!tt|tj S d S r
   )Zis_Rationalr   r   r   Zis_Floatr#   	is_numberr   r$   r    r   r   r   r#      s   z
log1p.evalc                 C   s   | j d tj jS r&   )r   r   r   is_nonnegativer'   r   r   r   r(      s   zlog1p._eval_is_realc                 C   s"   | j d tj jrdS | j d jS )Nr   F)r   r   r   is_zeror*   r'   r   r   r   r+      s   zlog1p._eval_is_finitec                 C   r%   r&   )r   Zis_positiver'   r   r   r   _eval_is_positive   r)   zlog1p._eval_is_positivec                 C   r%   r&   )r   r=   r'   r   r   r   _eval_is_zero   r)   zlog1p._eval_is_zeroc                 C   r%   r&   )r   r<   r'   r   r   r   _eval_is_nonnegative   r)   zlog1p._eval_is_nonnegativeNr,   )r-   r.   r/   r0   r1   r   r   r8   r2   r3   r#   r(   r+   r>   r?   r@   r   r   r   r   r5   V   s    


r5      c                 C   s
   t t| S r
   )r   _Twor   r   r   r   _exp2   r   rC   c                   @   s>   e Zd ZdZdZdddZdd ZeZdd Ze	d	d
 Z
dS )exp2a  
    Represents the exponential function with base two.

    Explanation
    ===========

    The benefit of using ``exp2(x)`` over ``2**x``
    is that the latter is not as efficient under finite precision
    arithmetic.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import exp2
    >>> exp2(2).evalf() == 4
    True
    >>> exp2(x).diff(x)
    log(2)*exp2(x)

    See Also
    ========

    log2
    r   c                 C   s   |dkr
| t t S t| |r   )r   rB   r   r   r   r   r   r      s   
z
exp2.fdiffc                 K   r7   r
   )rC   r   r   r   r   _eval_rewrite_as_Pow   r9   zexp2._eval_rewrite_as_Powc                 K   r   r
   )rC   r   r   r   r   r   r      r   zexp2._eval_expand_funcc                 C   s   |j rt|S d S r
   )r:   rC   r;   r   r   r   r#      s   z	exp2.evalNr,   )r-   r.   r/   r0   r1   r   rE   r2   r   r3   r#   r   r   r   r   rD      s    
	rD   c                 C      t | t t S r
   )r   rB   r   r   r   r   _log2      rG   c                   @   sF   e Zd ZdZdZdddZedd Zdd Zd	d
 Z	dd Z
e
ZdS )log2a  
    Represents the logarithm function with base two.

    Explanation
    ===========

    The benefit of using ``log2(x)`` over ``log(x)/log(2)``
    is that the latter is not as efficient under finite precision
    arithmetic.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log2
    >>> log2(4).evalf() == 2
    True
    >>> log2(x).diff(x)
    1/(x*log(2))

    See Also
    ========

    exp2
    log10
    r   c                 C   *   |dkrt jtt| jd   S t| |r6   )r   r   r   rB   r   r   r   r   r   r   r         
z
log2.fdiffc                 C   @   |j rtj|td}|jr|S d S |jr|jtkr|jS d S d S N)base)r:   r   r#   rB   is_Atomis_PowrN   r   r$   r    resultr   r   r   r#        z	log2.evalc                 O   s   |  tj|i |S r
   )Zrewriter   Zevalf)r   r   r!   r   r   r   _eval_evalf  s   zlog2._eval_evalfc                 K   r   r
   )rG   r   r   r   r   r   r     r   zlog2._eval_expand_funcc                 K   r7   r
   )rG   r   r   r   r   r8     r9   zlog2._eval_rewrite_as_logNr,   )r-   r.   r/   r0   r1   r   r3   r#   rT   r   r8   r2   r   r   r   r   rI      s    


rI   c                 C   s   | | | S r
   r   )r   yzr   r   r   _fma  r)   rW   c                   @   s0   e Zd ZdZdZdddZdd Zdd	d
ZdS )fmaa  
    Represents "fused multiply add".

    Explanation
    ===========

    The benefit of using ``fma(x, y, z)`` over ``x*y + z``
    is that, under finite precision arithmetic, the former is
    supported by special instructions on some CPUs.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.codegen.cfunctions import fma
    >>> fma(x, y, z).diff(x)
    y

       r   c                 C   s.   |dv r| j d|  S |dkrtjS t| |)r   r   rA   rA   rY   )r   r   r   r   r   r   r   r   r   6  s
   
z	fma.fdiffc                 K   r   r
   )rW   r   r   r   r   r   r   B  r   zfma._eval_expand_funcNc                 K   r7   r
   )rW   )r   r    Zlimitvarr!   r   r   r   r2   E  r9   zfma._eval_rewrite_as_tractabler,   r
   )r-   r.   r/   r0   r1   r   r   r2   r   r   r   r   rX      s    
rX   
   c                 C   rF   r
   )r   _Tenr   r   r   r   _log10L  rH   r]   c                   @   s>   e Zd ZdZdZdddZedd Zdd Zd	d
 Z	e	Z
dS )log10a"  
    Represents the logarithm function with base ten.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log10
    >>> log10(100).evalf() == 2
    True
    >>> log10(x).diff(x)
    1/(x*log(10))

    See Also
    ========

    log2
    r   c                 C   rJ   r6   )r   r   r   r\   r   r   r   r   r   r   r   e  rK   zlog10.fdiffc                 C   rL   rM   )r:   r   r#   r\   rO   rP   rN   r   rQ   r   r   r   r#   o  rS   z
log10.evalc                 K   r   r
   )r]   r   r   r   r   r   r   x  r   zlog10._eval_expand_funcc                 K   r7   r
   )r]   r   r   r   r   r8   {  r9   zlog10._eval_rewrite_as_logNr,   )r-   r.   r/   r0   r1   r   r3   r#   r   r8   r2   r   r   r   r   r^   P  s    


r^   c                 C   s   t | tjS r
   )r   r   ZHalfr   r   r   r   _Sqrt  r)   r_   c                   @   2   e Zd ZdZdZd
ddZdd Zdd ZeZd	S )Sqrta  
    Represents the square root function.

    Explanation
    ===========

    The reason why one would use ``Sqrt(x)`` over ``sqrt(x)``
    is that the latter is internally represented as ``Pow(x, S.Half)`` which
    may not be what one wants when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import Sqrt
    >>> Sqrt(x)
    Sqrt(x)
    >>> Sqrt(x).diff(x)
    1/(2*sqrt(x))

    See Also
    ========

    Cbrt
    r   c                 C   s,   |dkrt | jd tddt S t| |)r   r   r   rA   r   r   r   rB   r   r   r   r   r   r     s   
z
Sqrt.fdiffc                 K   r   r
   )r_   r   r   r   r   r   r     r   zSqrt._eval_expand_funcc                 K   r7   r
   )r_   r   r   r   r   rE     r9   zSqrt._eval_rewrite_as_PowNr,   	r-   r.   r/   r0   r1   r   r   rE   r2   r   r   r   r   ra     s    
	ra   c                 C   s   t | tddS )Nr   rY   )r   r   r   r   r   r   _Cbrt  rH   re   c                   @   r`   )Cbrta  
    Represents the cube root function.

    Explanation
    ===========

    The reason why one would use ``Cbrt(x)`` over ``cbrt(x)``
    is that the latter is internally represented as ``Pow(x, Rational(1, 3))`` which
    may not be what one wants when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import Cbrt
    >>> Cbrt(x)
    Cbrt(x)
    >>> Cbrt(x).diff(x)
    1/(3*x**(2/3))

    See Also
    ========

    Sqrt
    r   c                 C   s0   |dkrt | jd tt d d S t| |)r   r   r   rY   rc   r   r   r   r   r     s   
z
Cbrt.fdiffc                 K   r   r
   )re   r   r   r   r   r   r     r   zCbrt._eval_expand_funcc                 K   r7   r
   )re   r   r   r   r   rE     r9   zCbrt._eval_rewrite_as_PowNr,   rd   r   r   r   r   rf     s    

rf   c                 C   s   t t| dt|d S )NrA   )r	   r   )r   rU   r   r   r   _hypot  s   rg   c                   @   s2   e Zd ZdZdZdddZdd Zdd	 ZeZd
S )hypota  
    Represents the hypotenuse function.

    Explanation
    ===========

    The hypotenuse function is provided by e.g. the math library
    in the C99 standard, hence one may want to represent the function
    symbolically when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.codegen.cfunctions import hypot
    >>> hypot(3, 4).evalf() == 5
    True
    >>> hypot(x, y)
    hypot(x, y)
    >>> hypot(x, y).diff(x)
    x/hypot(x, y)

    rA   r   c                 C   s4   |dv rd| j |d   t| j| j    S t| |)r   rZ   rA   r   )r   rB   funcr   r   r   r   r   r     s   "
zhypot.fdiffc                 K   r   r
   )rg   r   r   r   r   r   r     r   zhypot._eval_expand_funcc                 K   r7   r
   )rg   r   r   r   r   rE     r9   zhypot._eval_rewrite_as_PowNr,   rd   r   r   r   r   rh     s    

rh   N)#r0   Zsympy.core.functionr   r   Zsympy.core.numbersr   Zsympy.core.powerr   Zsympy.core.singletonr   Z&sympy.functions.elementary.exponentialr   r   Z(sympy.functions.elementary.miscellaneousr	   r   r   r4   r5   rB   rC   rD   rG   rI   rW   rX   r\   r]   r^   r_   ra   re   rf   rg   rh   r   r   r   r   <module>   s6    =M4<)1./