o
    Eb^:                     @   s   d Z ddlZddlmZ dgZg dZG dd dZ					dd
dZ	dd Z
dd Zdd Zdd Zdd Zdd Zdd Zdd ZdS )z
Unified interfaces to root finding algorithms for real or complex
scalar functions.

Functions
---------
- root : find a root of a scalar function.
    N   )	_zeros_pyroot_scalar)bisectbrentqbrenthriddertoms748newtonsecanthalleyc                   @   s8   e Zd ZdZdd Zdd Zdd Zdd	 Zd
d ZdS )
MemoizeDera  Decorator that caches the value and derivative(s) of function each
    time it is called.

    This is a simplistic memoizer that calls and caches a single value
    of `f(x, *args)`.
    It assumes that `args` does not change between invocations.
    It supports the use case of a root-finder where `args` is fixed,
    `x` changes, and only rarely, if at all, does x assume the same value
    more than once.c                 C   s   || _ d | _d | _d| _d S )Nr   )funvalsxn_calls)selfr    r   =/usr/lib/python3/dist-packages/scipy/optimize/_root_scalar.py__init__   s   
zMemoizeDer.__init__c                 G   sR   | j du s
|| jkr$| j|g|R  }|| _|  jd7  _|dd | _ | j d S )z,Calculate f or use cached value if availableNr   r   )r   r   r   r   )r   r   argsZfgr   r   r   __call__#   s   
zMemoizeDer.__call__c                 G   .   | j du s
|| jkr| |g|R   | j d S )z/Calculate f' or use a cached value if availableNr   r   r   r   r   r   r   r   r   fprime-      
zMemoizeDer.fprimec                 G   r   )z0Calculate f'' or use a cached value if availableN   r   r   r   r   r   fprime23   r   zMemoizeDer.fprime2c                 C   s   | j S )N)r   )r   r   r   r   ncalls9   s   zMemoizeDer.ncallsN)	__name__
__module____qualname____doc__r   r   r   r   r   r   r   r   r   r      s    	
r   r   c              
   C   s  t |ts|f}|du ri }d}|dur+t|s+t|r)t| } d}| j}| j}nd}|durCt|sCt|rAt| } d}| j}nd}i }dD ]}t |}|durW|||< qG|r_|	| |j	ddd |s}|rmd}n|dur}|r{|rxd}nd}nd	}|st
d
| }ddd}ztt|||}W n ty } zt
d| |d}~ww |dv rt |tttjfst
d| |dd \}}|| ||fd|i|\}}n|dv r
|du rt
d| |du rt
d| d|v r|d|d< || |f|dd|d|\}}ny|dv r?|du rt
d| |s#t
d| d|v r/|d|d< || |f||dd|\}}nD|dv r}|du rOt
d| |sXt
d| |sat
d| d|v rm|d|d< || |f|||d|\}}nt
d| |r| j}||_|S )a  
    Find a root of a scalar function.

    Parameters
    ----------
    f : callable
        A function to find a root of.
    args : tuple, optional
        Extra arguments passed to the objective function and its derivative(s).
    method : str, optional
        Type of solver.  Should be one of

            - 'bisect'    :ref:`(see here) <optimize.root_scalar-bisect>`
            - 'brentq'    :ref:`(see here) <optimize.root_scalar-brentq>`
            - 'brenth'    :ref:`(see here) <optimize.root_scalar-brenth>`
            - 'ridder'    :ref:`(see here) <optimize.root_scalar-ridder>`
            - 'toms748'    :ref:`(see here) <optimize.root_scalar-toms748>`
            - 'newton'    :ref:`(see here) <optimize.root_scalar-newton>`
            - 'secant'    :ref:`(see here) <optimize.root_scalar-secant>`
            - 'halley'    :ref:`(see here) <optimize.root_scalar-halley>`

    bracket: A sequence of 2 floats, optional
        An interval bracketing a root.  `f(x, *args)` must have different
        signs at the two endpoints.
    x0 : float, optional
        Initial guess.
    x1 : float, optional
        A second guess.
    fprime : bool or callable, optional
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of the objective function and of the derivative.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    fprime2 : bool or callable, optional
        If `fprime2` is a boolean and is True, `f` is assumed to return the
        value of the objective function and of the
        first and second derivatives.
        `fprime2` can also be a callable returning the second derivative of `f`.
        In this case, it must accept the same arguments as `f`.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options : dict, optional
        A dictionary of solver options. E.g., ``k``, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : RootResults
        The solution represented as a ``RootResults`` object.
        Important attributes are: ``root`` the solution , ``converged`` a
        boolean flag indicating if the algorithm exited successfully and
        ``flag`` which describes the cause of the termination. See
        `RootResults` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers
    root : Find a root of a vector function.

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter.

    The default is to use the best method available for the situation
    presented.
    If a bracket is provided, it may use one of the bracketing methods.
    If a derivative and an initial value are specified, it may
    select one of the derivative-based methods.
    If no method is judged applicable, it will raise an Exception.


    Examples
    --------

    Find the root of a simple cubic

    >>> from scipy import optimize
    >>> def f(x):
    ...     return (x**3 - 1)  # only one real root at x = 1

    >>> def fprime(x):
    ...     return 3*x**2

    The `brentq` method takes as input a bracket

    >>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 10, 11)

    The `newton` method takes as input a single point and uses the derivative(s)

    >>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 22)

    The function can provide the value and derivative(s) in a single call.

    >>> def f_p_pp(x):
    ...     return (x**3 - 1), 3*x**2, 6*x

    >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 11)

    >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 7, 8)


    NFT)xtolrtolmaxiter)Zfull_outputZdispr   r   r
   r   zIUnable to select a solver as neither bracket nor starting point provided.)r   r   zUnknown solver %s)r   r   r   r   r	   zBracket needed for %sr   r   )r   zx0 must not be None for %szx1 must not be None for %sr$   Ztol)r   r   r   x1)r
   zfprime must be specified for %s)r   r   r   )r   z fprime2 must be specified for %s)
isinstancetuplecallableboolr   r   r   localsgetupdate
ValueErrorlowergetattroptzerosAttributeErrorlistnpZndarraypopr   Zfunction_calls)fr   methodZbracketr   r   Zx0r'   r$   r%   r&   optionsZis_memoizedkwargskvZmethZmap2underlyingZmethodceabrZsolr   r   r   r   r   =   s   
x








 c                   C      dS )a  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above

    Nr   r   r   r   r   _root_scalar_brentq_doc"     rB   c                   C   rA   a  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above.

    Nr   r   r   r   r   _root_scalar_brenth_doc5  rC   rE   c                   C   rA   rD   r   r   r   r   r   _root_scalar_toms748_docG  rC   rF   c                   C   rA   )a  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    x1 : float, required
        A second guess.
    options: dict, optional
        Specifies any method-specific options not covered above.

    Nr   r   r   r   r   _root_scalar_secant_docZ  s   rG   c                   C   rA   )a"  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function and its derivative.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    fprime : bool or callable, optional
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of derivative along with the objective function.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    options: dict, optional
        Specifies any method-specific options not covered above.

    Nr   r   r   r   r   _root_scalar_newton_docq  s   rH   c                   C   rA   )ar  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function and its derivatives.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    fprime : bool or callable, required
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of derivative along with the objective function.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    fprime2 : bool or callable, required
        If `fprime2` is a boolean and is True, `f` is assumed to return the
        value of 1st and 2nd derivatives along with the objective function.
        `fprime2` can also be a callable returning the 2nd derivative of `f`.
        In this case, it must accept the same arguments as `f`.
    options: dict, optional
        Specifies any method-specific options not covered above.

    Nr   r   r   r   r   _root_scalar_halley_doc  s   rI   c                   C   rA   rD   r   r   r   r   r   _root_scalar_ridder_doc  rC   rJ   c                   C   rA   rD   r   r   r   r   r   _root_scalar_bisect_doc  rC   rK   )r   NNNNNNNNNN)r#   Znumpyr5    r   r2   __all__ZROOT_SCALAR_METHODSr   r   rB   rE   rF   rG   rH   rI   rJ   rK   r   r   r   r   <module>   s*    *
 f