o
    Eb+                    @   s|  d dl Z d dlZd dlZd dlmZ d dlmZmZmZm	Z	m
Z
mZ d dlZd dlmZ d dlZd dlmZmZmZmZmZmZmZmZ d dlmZmZmZ d dlmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z) d dl*m+Z+ d d	l,m-Z-m.Z. d dl/m0Z1 zd d
lm2Z3 W n e4y   dZ3Y nw d dl*m5Z5 d dl6m7Z7 ej8ej9gZ:ej;ej<gZ=e:e= Z>dd Z?dd Z@G dd dZAG dd dZBG dd dZCejDEde>ejDEdg ddd ZFG dd dZGG dd dZHG d d! d!ZIG d"d# d#ZJd$d% ZKd&d' ZLd(d) ZMejDjNd*d+ ZOG d,d- d-ZPG d.d/ d/ZQd0d1 ZRd2d3 ZSd4d5 ZTd6d7 ZUd8d9 ZVd:d; ZWd<d= ZXd>d? ZYd@dA ZZdBdC Z[dDdE Z\dFdG Z]dHdI Z^dJdK Z_G dLdM dMZ`dNdO ZadPdQ ZbdRdS ZcdTdU ZdejDjedVdWdXdYdZ Zfd[d\ ZgejDEd]d^d_gejDEde:ejDEd`ehdaejDEdbehdcejDEddehdcejDEded dfgejDEdgd dfgd3dhdiZiejDEde:djdk ZjejDEdld`dmidbdmidddmidedmidndmidgdmifdodp ZkejDEdqelg drg dsg dtg dug dvg dwgelg dxelg dyg dzg d{g d|g d}g d~gelg dg dg dg dgfgdd ZmejDEde>dd ZnejDEdelg delg delg delg delg delg delg delddgddgddgddgddggelddgddgddgddgddfggf	elg delg delg delg delg delg delg delddgddgddgddgddggelddgddgddgddgddggf	gdd ZoejDEde>ejDEdg ddd ZpejDEdeqe:e: e>dd ZrejDEdeqe:e: e>dd ZsejDEdeqe:e: e>ddÄ ZtejDEdelg dŢelg dƢelg dǢelg dȢeldadgdmdcgddmgddgddggelddgddgdfdgddagddggfelg dѢelg dҢelg dӢelg dԢelddgddgddgddggelddgddgddgddggfgdd Zudd ZvejDEdeqe>e:e: ejDEdehddd ZwejDEdeqe>e:e: ejDEdehddd ZxejDEdeqe>e:e: ejDEdehddd ZyejDEdeqe>e:e: ejDEdehddd ZzejDEddelg delg delg delg dg dg dg dgfgdd Z{ejDEde>ejDEdg ddd Z|dd Z}ejDEdg dejDEdd dgdd Z~ejDEdddgejDEdd dgdd ZejDEde>ejDEd	g d
dd ZejDEde>dd ZejDEde>ejDEdddVgejDEdddgdd ZejDEde>ejDEdd dfgejDEdddgdd ZejDEde>d ejDEdddVgejDEdddgdd ZejDEdelg delg delg delddgddgddgddgddggelddgddgddgddgddfggfelg delg delg delddgddgddgddgddggelddgddgddgddgddggfgdd ZejDEdeqe>e:e: ejDEdddd fdd d fgd!d" ZejDEdeqe>e:e: ejDEddd#d fdd$d fgd%d& ZejDEdeqe>e:e: ejDEddd'd fdd(d fgd)d* ZejDEd+elg dŢelg dƢeldadgdmdcgddmgddgddggelddgddgdfdgddagddggfelg dѢelg dҢelddgddgddgddggelddgddgddgddggfgd,d- ZejDEd.ddVgejDEde>d/d0 ZejDEde>d1d2 ZdS (4      N)reduce)assert_equalassert_array_almost_equalassert_assert_allcloseassert_almost_equalassert_array_equal)raises)eyeoneszeros
zeros_liketriutriltril_indicestriu_indices)randrandintseed)_flapacklapackinvsvdcholeskysolveldlnorm
block_diagqreigh)_compute_lwork)ortho_groupunitary_group)_clapack)get_lapack_funcs)get_blas_funcsc                 C   s<   |t v rtjj|  tjj|  d  |S tjj|  |S )N              ?)COMPLEX_DTYPESnprandomr   astype)shapedtype r-   @/usr/lib/python3/dist-packages/scipy/linalg/tests/test_lapack.pygenerate_random_dtype_array+   s   
r/   c                  C   sz   t jdu r
td tt j } tg d}t }tt D ]}|ds2||vr2|| vr2|	| q|g ks;J ddS )z%Test that all entries are in the doc.Nzlapack.__doc__ is None)Zabsolute_importclapackZdivisionZfind_best_lapack_typeflapackZprint_functionZ	HAS_ILP64_z2Name(s) missing from lapack.__doc__ or ignore_list)
r   __doc__pytestskipsetsplitlistdir
startswithappend)namesZignore_listmissingnamer-   r-   r.   test_lapack_documented3   s   


r?   c                   @   ,   e Zd Zdd Zdd Zdd Zdd Zd	S )
TestFlapackSimplec           
      C   s   g dg dg dg}g dg dg dg dg}dD ]R}t t|d	 d }|d u r*q||\}}}}}	t|	 t|	 t|| t||fd
t|d
 d f t|tt| ||ddd\}}}}}	t|	 t|	 qd S )N)         )         )      	   )rB   r   r   ga2U0*3?)rE   r   r   gMb`?)rH   rB   r   r   )r   rB   r   r   ZsdzcZgebalr   rB   )Zpermutescale)	getattrr1   r   reprr   r   lenr(   r   )
selfaa1pfZbalohiZpivscaleinfor-   r-   r.   
test_gebalF   s$   
zTestFlapackSimple.test_gebalc                 C   s\   g dg dg dg}dD ]}t t|d d }|d u rq||\}}}t| t| qd S )Nikiifi     i"  iiidZgehrd)rL   r1   r   rM   )rO   rP   rR   rS   ZhttaurV   r-   r-   r.   
test_gehrd[   s   zTestFlapackSimple.test_gehrdc                 C   sZ  t ddgddgg}t ddgddgg}t dd	gd
dgg}d}dD ]}||||||}}}td|f\}	| rM|d  d7  < d}|	|||\}
}}tt ||
t |
| ||  |	|||||d\}
}}tt | j|
t |
| j || dd |	|||dd\}
}}tt ||
t |
| || dd q%d S )NrB   rC   r   rE   rF   rG   rI   rJ   
         TfdFD)trsylr&   C)ZtranaZtranbdecimal)Zisgn)	r(   arrayr*   r$   isupperr   dot	conjugaterb   )rO   rP   bctransr,   rQ   b1Zc1rd   xrK   rV   r-   r-   r.   
test_trsylf   s0   ""zTestFlapackSimple.test_trsylc           	      C   s  t g dg dg dg}dD ]{}dD ]v}||}| r'|d  d7  < td|f\}|||}|d	v rU|d
v r>d}nd}t t t t |}t	||| q|dv rbt 
t |}n#|dv rtt 
t jt |dd}n|dv rt 
t jt |dd}t|| qqd S )NrX   rY   r[   rc   ZMm1OoIiFfEer   r   r&   )langeZFfEeZFfrD   rH   ZMmZ1Oor   ZaxisZIirB   )r(   ri   r*   rj   r$   ZsqrtsumZsquareabsr   maxr   )	rO   rP   r,   Znorm_strrQ   rt   valuerg   refr-   r-   r.   
test_lange   s6   

zTestFlapackSimple.test_langeN)__name__
__module____qualname__rW   r^   rr   r{   r-   r-   r-   r.   rA   D   s
    rA   c                   @   s   e Zd Zdd Zdd ZdS )
TestLapackc                 C      t tdr	 d S d S NZempty_module)hasattrr1   rO   r-   r-   r.   test_flapack      
zTestLapack.test_flapackc                 C   r   r   )r   r0   r   r-   r-   r.   test_clapack   r   zTestLapack.test_clapackN)r|   r}   r~   r   r   r-   r-   r-   r.   r      s    r   c                   @   r@   )
TestLeastSquaresSolversc                 C   st  t d ttD ]K\}}d}d}d}t|||}t||}td|d\}}	t|	|||}
||||
d\}}}t|dk |||d	| |
d
\}}}t|dk qtD ]o}t	j
ddgddgddgg|d}t	j
g d|d}td||f\}}}|j\}}t|jdkr|jd }nd}t||||}
||||
d\}}}t|d d t	j
ddg|ddt	|j d ||\}}}}t|| qVtD ]o}t	j
ddgddgddgg|d}t	j
g d|d}td||f\}}}|j\}}t|jdkr|jd }nd}t||||}
||||
d\}}}t|d d t	j
dd g|ddt	|j d ||\}}}}t|| qd S )!N  r_      rB   )gels
gels_lworkr,   lworkr   ZTTCCro   r         ?       @      @      @      @       @      0@g      1@g      4@)r   r   geqrfrC   rh   祪,-@   rtol      ?      @      @      ?      @            @              @ffffff?r   y      1@       @y      4@      R ?\j,? W?)r   	enumerateDTYPESr   r*   r$   r    r   REAL_DTYPESr(   ri   r+   rN   r   finfoepsr   r'   )rO   indr,   mnnrhsrQ   rp   ZglsZglslwr   r2   rV   r   r   r   Zlqrrq   Z	lqr_truthr-   r-   r.   	test_gels   s   





z!TestLeastSquaresSolvers.test_gelsc              
   C   s0  t D ]}tjddgddgddgg|d}tjg d|d}td	||f\}}|j\}}t|jd
kr8|jd }nd}||||d\}	}
}tt|	}|
}|||||ddd\}}}}t|d d tjddg|ddt	|j
 d t|tjddg|ddt	|j
 d qtD ]}tjddgddgddgg|d}tjg d|d}td	||f\}}|j\}}t|jd
kr|jd }nd}||||d\}	}}
}tt|	}t|}|
}||||||ddd\}}}}t|d d tjddg|ddt	|j
 d t|tjddg|ddt	|j
 d qd S )Nr   r   r   r   r   r   r   r   )gelsdgelsd_lworkrC   rB   rh   Fr   r   r   r   YN))1)@*@.?r   r   r   r   r   r   r   r   U.*@_Y@r   r(   ri   r$   r+   rN   intrealr   r   r   r'   )rO   r,   rQ   rp   r   r   r   r   r   workiworkrV   r   Z
iwork_sizerq   srankZrworkZ
rwork_sizer-   r-   r.   
test_gelsd   s   






z"TestLeastSquaresSolvers.test_gelsdc                 C   s  t D ]}tjddgddgddgg|d}tjg d|d}td	||f\}}|j\}}t|jd
kr8|jd }nd}||||d\}	}
tt|	}|||d|dd\}}}}}	}
t|d d tjddg|ddt	|j
 d t|tjddg|ddt	|j
 d qtD ]}tjddgddgddgg|d}tjg d|d}td	||f\}}|j\}}t|jd
kr|jd }nd}||||d\}	}
tt|	}|||d|dd\}}}}}	}
t|d d tjddg|ddt	|j
 d t|tjddg|ddt	|j
 d qd S )Nr   r   r   r   r   r   r   r   )gelssgelss_lworkrC   rB   rh   Fr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )rO   r,   rQ   rp   r   r   r   r   r   r   rV   r   vrq   r   r   r-   r-   r.   
test_gelss3  s   





z"TestLeastSquaresSolvers.test_gelssc              	   C   s(  t D ]}tjddgddgddgg|d}tjg d|d}td	||f\}}|j\}}t|jd
kr8|jd }nd}||||dt|j \}	}
tt	|	}tj
|jd dftjd}||||t|j|dd\}}}}}
t|d d tjddg|ddt|j d qtD ]}tjddgddgddgg|d}tjg d|d}td	||f\}}|j\}}t|jd
kr|jd }nd}||||dt|j \}	}
tt	|	}tj
|jd dftjd}||||t|j|dd\}}}}}
t|d d tjddg|ddt|j d qd S )Nr   r   r   r   r   r   r   r   )gelsyr   rC   rB   r_   Frh   r   r   r   r   r   r   r   r   r   r   r   r   )r   r(   ri   r$   r+   rN   r   r   r   r   r   Zint32r   r'   )rO   r,   rQ   rp   r   Zgelsy_lworkr   r   r   r   rV   r   Zjptvr   rq   jr   r-   r-   r.   
test_gelsyl  st   



z"TestLeastSquaresSolvers.test_gelsyN)r|   r}   r~   r   r   r   r   r-   r-   r-   r.   r      s
    D<9r   r,   r+   )rD   rE   )rF   rC      r   c                 C   2   t d| d}|\}}|||d\}}t|d d S )Ngeqrf_lworkr   r   r   r   r$   r   )r,   r+   r   r   r   r   rV   r-   r-   r.   test_geqrf_lwork     r   c                   @      e Zd Zdd ZdS )TestRegressionc           
      C   s   t D ]j}tjd|d}tdg|g\}tt||dd ||\}}}}|tv rHtdg|g\}tt||dd  |dd ||dd  |dd q|tv rltd	g|g\}	tt|	|dd  |dd |	|dd  |dd qd S )
N)i,  rC   r   gerqfrC   r   orgrqrB   ungrq)r   r(   r   r$   assert_raises	Exceptionr   r'   )
rO   r,   rP   r   Zrqr]   r   rV   r   r   r-   r-   r.   test_ticket_1645  s   zTestRegression.test_ticket_1645N)r|   r}   r~   r   r-   r-   r-   r.   r     s    r   c                   @   r   )	TestDpotrc           
      C   s   dD ]O}dD ]J}t jd t jjdd}||j}td|f\}}||||d\}}|||d }	|rCtt |	t t	| qtt 
|	t 
t	| qqd S )N)TF*   )rD   rD   )size)potrfZpotri)cleanr   )r(   r)   r   Znormalrk   rb   r$   r   r   r   r   )
rO   lowerr   rq   rP   ZdpotrfZdpotrirn   rV   Zdptr-   r-   r.   test_gh_2691  s   zTestDpotr.test_gh_2691N)r|   r}   r~   r   r-   r-   r-   r.   r         r   c                   @   r   )
TestDlasd4c              
   C   sl  t g d}t g d}t t t |dd t dt|d ff|d d t jf f}t|ddddd}t|}t 	|d d d |d |t
|  gf}t 	|d d d df}td	|f}g }	td|D ]}
||
||}|	|d  t|d
 dkd|
  qlt |	d d d }	tt t |	 df t||	dt t jj dt t jj d d S )N)r         @r   r   )g(\@g@g333333皙r   rh   rB   F)Zfull_matrices
compute_uvoverwrite_aZcheck_finiter   lasd4rD   zcLAPACK root finding dlasd4 failed to find                                     the singular value %izThere are NaN rootsd   atolr   )r(   ri   hstackZvstackdiagr   rN   Znewaxisr   concatenater   r$   ranger;   r   anyZisnanr   r   float64r   )rO   ZsigmasZm_vecMZSMZit_lenZsgmZmvcr   rootsiresr-   r-   r.   test_sing_val_update  s4   
*
zTestDlasd4.test_sing_val_updateN)r|   r}   r~   r   r-   r-   r-   r.   r     r   r   c                   @   s   e Zd Zejdedd Zejddd eD ejddd	gejd
ddgdd Zejdg dg dg dgdd Z	dd Z
ejdddgdd ZdS )	TestTbtrsr,   c                 C   s2  |t v r8tjg dg dg|d}tjddgddgdd	gd
dgg|d}tjddgddgddgddgg|d}nC|tv rstjg dg dg dg|d}tjddgddgddgddgg|d}tjddgd d!gd"d#gd$d%gg|d}ntd&| d'td(|d}|||d)d*\}}t|d+ t||d+d,d- d.S )/zTest real (f07vef) and complex (f07vsf) examples from NAG

        Examples available from:
        * https://www.nag.com/numeric/fl/nagdoc_latest/html/f07/f07vef.html
        * https://www.nag.com/numeric/fl/nagdoc_latest/html/f07/f07vsf.html

        )p=
ףgQ@gHzG@g{Gz?)g      gq=
ףp@gHzGr   r   gp=
ף0r   g(\+gףp=
0g333333*@g(\gHzG,gQ#rE   rB   rh   rD   rC   r   )y
ףp=
Q@y{Gz@GzyQ?HzGy)\(??)yQQ@yq=
ףpGz@yףp=
?{Gzr   )yQ?q=
ףp@y)\(zGr   r   yQ!
ףp=
yףp=
8Gzyp=
#/)\h7y\(LHzG @yQHz6@yףp=
3@(\=y{Gz-333333yQ+3@GzT5@y               @y      ?      @y      ?      y             yt&m=#yi6@Ug$B@y[a^C?b->y-@ji& *!z	Datatype z not understood.tbtrsLabrm   uplor   h㈵>r   r   N)r   r(   ri   r'   
ValueErrorr$   r   r   )rO   r,   r   rm   Zx_outr   rq   rV   r-   r-   r.   test_nag_example_f07vef_f07vsf  s\   	






z(TestTbtrs.test_nag_example_f07vef_f07vsfzdtype,transc                 C   s.   g | ]}d D ]}|dkr|t v s||fqqS ))Nrb   re   re   )r   ).0r,   ro   r-   r-   r.   
<listcomp>'  s    zTestTbtrs.<listcomp>r   Ur   r   r   c                    sv  t d d\}}td d}|dk}|| }	||	 }
t|	|
 d d}fdd	|D } fd
d	|D }|dkrCtj d||	< tj||dd}t|d f }t|D ]\}}|	|||t
|dt| f< qYt|f }||||||d\}}t|d |dkrt|| |dd d S |dkrt|j| |dd d S |dkrt|j| |dd d S td)Ni  )rE   rD   rC   r   r   r  rB   rh   c                    s   g | ]} t | qS r-   )rw   r  rq   r   r-   r.   r  ;      z2TestTbtrs.test_random_matrices.<locals>.<listcomp>c                    s   g | ]}t |f qS r-   )r/   )r  widthr   r-   r.   r  <  s    Zdia)formatr   )r   rm   r   ro   r   r   g-C6
?r   rb   re   zInvalid trans argument)r   r$   r   r(   r   spsZdiagsr   r   Zdiagonalrx   minr/   r   r   rb   Hr   )rO   r,   ro   r   r   r   Zkdr   Zis_upperZkuklZband_offsetsZband_widthsZbandsrP   r   rowkrm   rq   rV   r-   )r,   r   r.   test_random_matrices&  s6   

(
zTestTbtrs.test_random_matriceszuplo,trans,diag)r  r   Invalid)r  r  r   )r  r   r   c                 C   s:   t dtjd}tdd}tdd}tt|||||| dS )z?Test if invalid values of uplo, trans and diag raise exceptionsr   r   rE   rC   N)r$   r(   r   r   r   r   )rO   r   ro   r   r   r   rm   r-   r-   r.   &test_invalid_argument_raises_exceptionY  s   

z0TestTbtrs.test_invalid_argument_raises_exceptionc                 C   sP   t jdtd}t jdtd}tdtd}d|d< |||dd\}}t|d d	S )
aH  Test if a matrix with a zero diagonal element is singular

        If the i-th diagonal of A is zero, ?tbtrs should return `i` in `info`
        indicating the provided matrix is singular.

        Note that ?tbtrs requires the matrix A to be stored in banded form.
        In this form the diagonal corresponds to the last row.r   r   rE   r   r   )rh   rD   r  r   N)r(   r   floatr$   r   )rO   r   rm   r   r2   rV   r-   r-   r.   test_zero_element_in_diagonalf  s   z'TestTbtrs.test_zero_element_in_diagonalzldab,n,ldb,nrhs)rF   rF   r   rF   )rF   rF   rD   rF   c                 C   sB   t j||ftd}t j||ftd}tdtd}tt||| dS )z2Test ?tbtrs fails correctly if shapes are invalid.r   r   Nr(   r   r  r$   r   r   )rO   Zldabr   Zldbr   r   rm   r   r-   r-   r.   test_invalid_matrix_shapesv  s   z$TestTbtrs.test_invalid_matrix_shapesN)r|   r}   r~   r4   markparametrizer   r   r  r  r  r  r-   r-   r-   r.   r     s0    
--
	r   c                  C   s   dD ]O} t d| d}td| }td| }t|r|d9 }|||\}}}t|d t|d t|rLt|d	 tt|tk tt|tk qt|d
 qd S )Nrc   lartgr   rD   rE   r&   333333?r   y       皙?)	r$   r(   ri   iscomplexobjr   r   typecomplexr  )r,   r  rS   gcsZsnrr-   r-   r.   
test_lartg  s   




r!  c            
      C   s  dD ]} d}d}t dd| }t dd| }dt | jd   }| dv r/td	| d
}d}ntd	| d
}|d9 }|d9 }d}t|||||g dg dg|d t|||||ddg ddd||gg|d t|||||dddg d||ddgg|d t|||||ddddg d||ddgg|d t|||||ddddg dd|d|gg|d t|||||dddddd	g d||d|gg|d t|||||ddddg dd|d|gg|d |||||ddd\}}	t||u  t|	|u  t|g d|d t|	g d|d qd S )Nrc   r  r  rE   rD   r_   rB   fdrotr   y             r&   y              @)rF   rF   rF   rF   )r   r   r   r   r   rC   r  )rF   rF   rD   rD   r   )offxoffy)rD   rD   rF   rF   )incxr&  r   )rF   rD   rF   rD   )r%  incyr   )r%  r'  r&  r(  r   )rD   rD   rF   rD   r   )r'  r(  r   )Zoverwrite_xZoverwrite_y)r(   Zfullr   Z	precisionr%   r$   r   r   )
r,   rn   r   ur   r   r#  rS   rP   rm   r-   r-   r.   test_rot  sX   

r*  c               	   C   s  t jd t jd} | j| } t jddt jd  }|j |}dD ]}tddg|d\}}|dv r?| }n|  }||jd	 d
 |d |dd d	f \}}}t 	|d d d	f }	|d |	d	< ||	d
< t 	|d
d d	f }
d|
d	< ||
d
d < ||
|
 |d
d d d f t |jd
 |d
d d d f< ||
||d d d
d f t |jd	 dd|d d d
d f< t|d d d	f |	dd t|d	d d f |	dd q*d S )Nr   )rE   rE   r&   rc   larfglarfr   ZFDr   rB   rB   r   rC   rs   r   Rsider   r$  )r(   r)   r   rb   rk   conjr$   copyr+   r   rl   r   r   )Za0Za0jr,   r+  r,  rP   alpharq   r]   expectedr   r-   r-   r.   test_larfg_larf  s,   
,>>r5  c                  C   st   t jtjddgt jt jd} tdD ]}td | 	 d ur$| j
} nqd}|   t|dd| j    d S )Nz-czfimport numpy as np; from scipy.linalg import svd; a = np.zeros([9537, 9537], dtype=np.float32); svd(a))stdoutstderr2   g?r   zCode apparently failed: )
subprocessPopensys
executablePIPEZSTDOUTr   timesleepZpoll
returncodeZ	terminater   r6  readdecode)rR   r   r@  r-   r-   r.    test_sgesdd_lwork_bug_workaround  s"   
	

rC  c                   @   sF   e Zd Zejdedd Zejdeejdddd ZdS )		TestSytrdr,   c                 C   *   t jd|d}td|f}tt|| d S )Nrs   r   sytrdr(   r   r$   r   r   )rO   r,   ArF  r-   r-   r.   test_sytrd_with_zero_dim_array     z(TestSytrd.test_sytrd_with_zero_dim_arrayr   rB   rD   c                 C   s  t j||f|d}td|f\}}t jd||d  d d |d|t |< ||\}}t|d ||d|d\}}	}
}}t|d t||dt |j dd	 t|	t 	| t|
d
 t|d
 |||d\}}	}
}}t|d t j
||d}t |jd }|	|||f< t |jd d }|
||d |f< |
|||d f< t j|||d}t|d D ]3}t j||d}|d ||d f |d |< d||< t j|||d|| t ||  }t ||}qt |d}|j| ||< t |jt ||}t||dt |j dd	 d S )Nr   )rF  sytrd_lworkrB   rC   r   r   r   rF   r   r           r   rh   )r(   r   r$   arangetriu_indices_fromr   r   r   r   r   r   r+   r
   r   outerrk   r   rb   )rO   r,   r   rH  rF  rL  r   rV   datar\   er]   rb   r  k2Qr   r   r  i_lowerZQTAQr-   r-   r.   
test_sytrd  s@   





$ zTestSytrd.test_sytrdN)	r|   r}   r~   r4   r  r  r   rI  rW  r-   r-   r-   r.   rD    s    
rD  c                   @   sL   e Zd Zejdedd Zejdee	eejdddd Z
d	S )
	TestHetrdcomplex_dtypec                 C   rE  )Nrs   r   hetrdrG  )rO   rY  rH  rZ  r-   r-   r.   test_hetrd_with_zero_dim_arrayU  rJ  z(TestHetrd.test_hetrd_with_zero_dim_arrayzreal_dtype,complex_dtyper   rK  c              	   C   s  t j||f|d}td|f\}}t jd||d  d d |ddt jd||d  d d |d  |t |< t |t t | dD ]}|||d\}}	t|	d qFt	||}
||d|
d	\}}}}}	t|	d t
||d
t |j dd t
|t t | t
|d t
|d |||
d\}}}}}	t|	d t j||d}t j|jd td}||||f< t j|jd d td}|||d |f< ||||d f< t j|||d}t|d D ]6}t j||d}|d ||d f |d |< d||< t j|||d|| t |t |  }t ||}qt |d}t |j| ||< t t |jt ||}t
||dt |j dd d S )Nr   )rZ  hetrd_lworkrB   rC   r&   )r   rB   r   r   rM  rF   r   r   rN  r   rh   r_   )r(   r   r$   rO  rP  Zfill_diagonalr   r   r   r    r   r   r   r   r+   r   r
   r   rQ  r1  rk   r   rb   )rO   r   Z
real_dtyperY  rH  rZ  r\  rq   r2   rV   r   rR  r\   rS  r]   rb   r  rT  rU  r   r   r  rV  ZQHAQr-   r-   r.   
test_hetrd\  sR   
"





zTestHetrd.test_hetrdN)r|   r}   r~   r4   r  r  r'   r[  zipr   r^  r-   r-   r-   r.   rX  T  s    
rX  c               
   C   s^  t tD ]\} }td|d\}}t|dddd}| dk rHtjg dg dg d	g d
g dg dg|d}tjg d|d}tjddg|d}n/tg dg dg dg dg dg dg}tdgdgdgdgdgdgg}tjd|d}tjg dg dg|d}||||||d\}	}	}	}
}	| dk rtg d}ntg d}t|
|dd  qd S )!N)ZgglseZgglse_lworkr   rG   rE   rC   )r   r   rR   )g=
ףp=g{Gzg(\ؿg      ?)zGgHzG?gףp=
ӿQ)ffffff@gQ?g?gffffffֿ)r`  g{Gz?Qg{Gz?)333333?g333333?rd  g
ףp=
)g{Gz{Gz?gzG      ?)g      ra  gGz?gHzGgzGg=
ףp=?rN  )yQ?QyQQ?yQ{Gz @y=
ףp=?)y\(\￮Gz?y333333RQ?yQzG?yQQ?)yףp=
?q=
ףpݿy)\(?{Gz?y)\(?(\ſy(\333333?)yGz?RQ?yRQ?HzGy\(\
ףp=
׿y)\(?ɿ)y(\?RQ?y?{Gz?y(\ſq=
ףpݿyQ?q=
ףp?)yHzG?Qѿy?QyQ뱿Gz?yp=
ף?p=
ף?yRQ
ףp=
?yffffff?GzyzG GzyQ?ffffff
@yp=
ף)\(@y(\ @Q?)r   rN        rN  )rN  r   rN  rg  r   )^"L?\}?rh  ri  )y!f?$_Kdy^gŵ翸F@y!f?}dy61ŵe_@rf   )r   r   r$   r    r(   ri   r   r   )r   r,   func
func_lworkr   rP   rn   r\   rm   r2   resultr4  r-   r-   r.   
test_gglse  sN   


rm  c                  C   s  t d ttt D ]\} }d}| dk r+td|d}td|d\}}t|||}ntd|d}td|d\}}t||t||d	  |}|| j d
 d
t	j
||d  }t|d}t||}|||dd\}	}
}||	|
|dd\}}ttd| t	jj|dd | dk  q
d S )Nr   r_   rE   sytrf_lworkr   )ZsyconsytrfZhetrf_lwork)ZheconZhetrfr&   rC   rB   )r   r   )rP   ipivanormr   rR   )r   r   r   r'   r$   r   r*   r1  rb   r(   r
   r   r    r   rw   linalgcond)r   r,   r   rk  ZfunconZfunctrfrH  rq  r   ldurp  r2   rcondr-   r-   r.   test_sycon_hecon  s"   $

*rw  c                  C   s   t d ttD ]r\} }d}td|d\}}}}t|||}||j d }t|||}||j d dtj||d  }|||\}	}
}t	|dk ||\}}t	|dk |||\}}t	|dk ||\}}
}t	|dk t
||	dd qd S )	Nr   r_   )r   sygstsyevdsygvdr   rC   r   -C6?r   )r   r   r   r$   r   r*   rb   r(   r
   r   r   )r   r,   r   r   rx  ry  rz  rH  Beig_gvdr2   rV   rm   rP   eigr-   r-   r.   
test_sygst  s(    r  c                  C   s*  t d ttD ]\} }d}td|d\}}}}t|||dt|||  }|| j d }t|||dt|||  }|| j d dtj	||d  }|||\}	}
}t
|dk ||\}}t
|dk |||\}}t
|dk ||\}}
}t
|dk t||	dd	 qd S )
Nr   r_   )r   hegstheevdhegvdr   r&   rC   r   r{  r   )r   r   r'   r$   r   r*   r1  rb   r(   r
   r   r   )r   r,   r   r   r  r  r  rH  r|  r}  r2   rV   rm   rP   r~  r-   r-   r.   
test_hegst  s(   $$$r  c               	      sl  t d d\} }ttD ]\}}td|d\}}t|| |}|dk r-tt| ||}ntt| |t| |d  |}tt	||j
 |||d\}}	t|	dk t|d	d	d	| f tj| ||  f|df}
ttj| |d|d	d	| d	f ftj||d  fd
dt| D }ttj|}t|
|| t||ddt|dj dd qd	S )z
    This test performs an RZ decomposition in which an m x n upper trapezoidal
    array M (m <= n) is factorized as M = [R 0] * Z where R is upper triangular
    and Z is unitary.
    r   )r_      tzrzfZtzrzf_lworkr   rC   r&   r   r   Nc              
      D   g | ]} | |gd d f j |gd d f    qS Nrb   rk   r1  r  ZIdVr]   r-   r.   r  I     D ztest_tzrzf.<locals>.<listcomp>r_   r   rN  r   )r   r   r   r$   r    r   r   r*   r   r   rb   r   r(   r   r   r
   r   r   rk   r   r   spacingr   )r   r   r   r,   r  tzrzf_lwr   rH  rzrV   r.  rz   Zr-   r  r.   
test_tzrzf-  s,   
"0(r  c               	   C   s  t d ttD ]\} }d}| dkr*tt||t||d  t| |}d}ntt||t| |}d}td|d\}}}||\}}	t|d	|}
|d
||
}t|t	| |
| d	 dkrfdndd |d
||
|d}t|t	|
 j |
| d	 dkrdndd |d|t|t|f< |d
||
|dd}t|t	|
 j |
| d	 dkrdndd td||}|d
|||ddd}t|t	| |j
 j| d	 dkrdndd qdS )z
    Test for solving a linear system with the coefficient matrix is a
    triangular array stored in Full Packed (RFP) format.
    r   r   rB   r&   re   rb   )trttftfttrtfsmr   rC   rh   r   rE   rG   rf   ro   r   r  )ro   r   rD   r.  )ro   r   r0  N)r   r   r   r   r   r
   r*   r$   r   r   r1  rb   r(   rO  )r   r,   r   rH  ro   r  r  r  Afpr2   r|  solnZB2r-   r-   r.   	test_tfsmO  s@   *r  c               	      s~  t d d\} }}ttD ].\}}td|d\}}t|| |}|dk r?tt| ||}t|||}	td|d\}
}n(tt| |t| |d  |}t||t||d  |}	td|d\}
}t|||}|||d	\}}t	tj
| |d|d
d
| d
f ftj
||d  fddt| D }ttj|}|dk rdnd}dt|dj }|
||	|d	\}}t|dk t|||	 t|	|dd |
||	||d\}}t|dk t|| j|	 t|	|dd |
||	d|d\}}t|dk t||	| t|	|dd |
||	d||d\}}t|dk t||	| j t|	|dd qd
S )a  
    This test performs a matrix multiplication with an arbitrary m x n matric C
    and a unitary matrix Q without explicitly forming the array. The array data
    is encoded in the rectangular part of A which is obtained from ?TZRZF. Q
    size is inferred by m, n, side keywords.
    r   )r_   r  r  r  r   rC   )ZormrzZormrz_lworkr&   )ZunmrzZunmrz_lworkr   Nc              
      r  r  r  r  r  r-   r.   r    r  z$test_ormrz_unmrz.<locals>.<listcomp>rb   re   r_   r   r   rN  r   r   r.  )r0  r   )r0  ro   r   )r   r   r   r$   r    r   r   r*   r(   r   r
   r   r   rk   r  r   r   r   r   r1  rb   )ZqmZqnZcnr   r,   r  r  Zlwork_rzrH  re   Zorun_mrzZorun_mrz_lwZ	lwork_mrzr  rV   rz   rU  ro   tolZcqr-   r  r.   test_ormrz_unmrzx  sV   

"
(r  c               	   C   s   t d ttD ]t\} }d}| dkr%t||t||d  |}d}n
t|||}d}td|d\}}||\}}t|d	k ||d
d\}	}t|d	k |||dd\}
}t|d	k |||d
d\}}t|d	k t|d |d f|d}t|dd|d df |ddddf< ||d d dddf  t|d|d d|d f 	 j
7  < t|d |d f|d}t|ddd|d f |ddddf< |d|d ddf  t||d d|d df 	 j
7  < t||jddd t|
|	 j
jddd t|	|jddd t||	 j
jddd |||\}}t|d	k |||	d
d\}}t|d	k |||
|dd\}}t|d	k ||||d
d\}}t|d	k t|t| t|t| t|t| t|t| qdS )z
    Test conversion routines between the Rectengular Full Packed (RFP) format
    and Standard Triangular Array (TR)
    r   r   rB   r&   re   rb   )r  r  r   r   r   r   r  )transrr   rC   Nrh   F)Zorder)r   r   r   r   r*   r$   r   r   r   r1  rb   r   r   reshape)r   r,   r   A_fullr  r  r  ZA_tf_UrV   ZA_tf_LZA_tf_U_TZA_tf_L_TZA_tf_U_mZA_tf_L_mA_tr_UA_tr_LZA_tr_U_TZA_tr_L_Tr-   r-   r.   test_tfttr_trttf  sX   ,F,Br  c                  C   sr  t d ttD ]\} }d}| dkr"t||t||d  |}nt|||}td|d\}}||\}}t|dk ||dd	\}}t|dk t|}	t||d  d
 |d}
t	|j
|	 |
dd< t|}	t||d  d
 |d}t|j
|	 |dd< t||
 t|| |||\}}t|dk |||dd	\}}t|dk t|t	| t|t| qdS )r  r   r   rB   r&   )trttptpttrr   r   r   r  rC   N)r   r   r   r   r*   r$   r   r   r   r   rb   r   r   r   )r   r,   r   r  r  r  ZA_tp_UrV   ZA_tp_LindsZA_tp_U_mZA_tp_L_mr  r  r-   r-   r.   test_tpttr_trttp  s4    

r  c                  C   s   t d ttD ]f\} }d}| dkr/t||t||d  |}|| j |t|  }nt|||}||j |t|  }td|d\}}}||\}}|||\}	}t	|dk |||	\}
}t
|}t|
| qdS )	zk
    Test Cholesky factorization of a positive definite Rectengular Full
    Packed (RFP) format array
    r   r   rB   r&   )pftrfr  r  r   r   N)r   r   r   r   r*   r1  rb   r
   r$   r   r   r   )r   r,   r   rH  r  r  r  r  rV   Z	Achol_rfpZA_chol_rr2   ZAcholr-   r-   r.   
test_pftrf  s$   r  c                  C   s
  t d ttD ]z\} }d}| dkr/t||t||d  |}|| j |t|  }nt|||}||j |t|  }td|d\}}}}||\}}	|||\}
}	|||
\}}	t	|	dk |||\}}t
|}t|t|| d dkr~d	nd
d qdS )z
    Test Cholesky factorization of a positive definite Rectengular Full
    Packed (RFP) format array to find its inverse
    r   r   rB   r&   )pftrir  r  r  r   r   rC   rE   rG   rf   N)r   r   r   r   r*   r1  rb   r
   r$   r   r   r   r   )r   r,   r   rH  r  r  r  r  r  rV   
A_chol_rfpZ	A_inv_rfpZA_inv_rr2   ZAinvr-   r-   r.   
test_pftri0  s*   
r  c                  C   s\  t d ttD ]\} }d}| dkr/t||t||d  |}|| j |t|  }nt|||}||j |t|  }t|df|d}t|d df|d}t|d df|d}t	d|d\}}}	}
|	|\}}|||\}}||||\}}t
|d	k tt|||| ||||\}}t
|d	k tt|||| d d	krd
ndd qdS )z
    Test Cholesky factorization of a positive definite Rectengular Full
    Packed (RFP) format array and solve a linear system
    r   r   rB   r&   rD   r   rC   )pftrsr  r  r  r   rE   rG   rf   N)r   r   r   r   r*   r1  rb   r
   r   r$   r   r   r   r   r   )r   r,   r   rH  r|  ZBf1ZBf2r  r  r  r  r  rV   r  r  r-   r-   r.   
test_pftrsP  s2   r  c                  C   s0  t d ttD ]\} }d}| dkr/t||t||d  |}|| j |t|  }nt|||}||j |t|  }| dk rHdnd}tdd	d
	|f|d\}}}||\}}	t
j|d|}
||dd|
d|}|||\}}	t|t|
|
 j d|  | d dkrdndd qdS )zT
    Test for performing a symmetric rank-k operation for matrix in RFP format.
    r   r   rB   r&   rC   r   hr  r  z{}frkr   rh   r   rE   rG   rf   N)r   r   r   r   r*   r1  rb   r
   r$   r  r(   r)   r   r   rk   )r   r,   r   rH  prefixr  r  Zshfrkr  r2   re   ZAfp_outZA_outr-   r-   r.   test_sfrk_hfrku  s,    r  c                  C   s  t d ttD ]\} }d}| dkr/tdd||ftdd||fd  |}|| j }ntdd||f|}||j |t|  }dt	|dj
 }td	|d
\}}}t||dd}t|ddd\}	}
}t||dd}||d|d\}}}|||dd\}}}tt|dt|	|ddf d|dd t|ddd\}}
}||dd\}}}|||dd\}}}tt|dt||ddf d|dd qdS )zt
    Test for going back and forth between the returned format of he/sytrf to
    L and D factors/permutations.
    r   r_   rB   i   r&   r   r   )syconvro  rn  r   r]  F)r   Z	hermitianrM  rh   NrN  r   r   )r   r   r   r   r*   r1  rb   r
   r(   r  r   r$   r    r   r   r   r   )r   r,   r   rH  r  r  ZtrfZ	trf_lworklwr   DZpermru  rp  rV   rP   rS  r  r-   r-   r.   test_syconv  s6   (*r  c                   @   s    e Zd ZdZdd Zdd ZdS )TestBlockedQRzd
    Tests for the blocked QR factorization, namely through geqrt, gemqrt, tpqrt
    and tpmqr.
    c              
   C   s.  t d ttD ]\}}d}|dkr#t||t||d  |}nt|||}dt|dj }td|d\}}|||\}}	}
|
d	ksKJ t	|d
tj
||d }tj
||d||	 |j   }t|}t|j | tj
||d|dd t|| ||dd |dkrt||t||d  |}d}n
t|||}d}dD ]T}d|fD ]M}|||	|||d\}}
|
d	ksJ ||kr|j }n|}|dkr|| }n|| }t|||dd ||fdkr|||	|\}}
|
d	ksJ t|| qqtt|||	|dd tt|||	|dd qd S )Nr   r   rB   r&   r   r   )geqrtgemqrtr   r   rh   rN  r   re   rb   r   r.  r   r0  ro   r   r   r   rH  r/  r  )r   r   r   r   r*   r(   r  r   r$   r   r
   rb   r1  r   r   r   r   r   )rO   r   r,   r   rH  r  r  r  rP   trV   r   rU  r.  re   	transposer0  ro   rn   qZqC	c_defaultr-   r-   r.   test_geqrt_gemqrt  sT     


zTestBlockedQR.test_geqrt_gemqrtc                  C   s  t d ttD ]\}}d}|dkr2t||t||d  |}t||t||d  |}nt|||}t|||}dt|dj }td|d\}}d	|d
 |fD ]t}	||	|||\}
}}}|d	ksoJ t	t
|
dt
|d t	t
||	| d t
||	| d  t||	| t||	| }}ttj||d|f}tjd
| |d|| |j   }tt|
t|
f}t|j | tjd
| |d|dd t|| tt||f|dd |dkrt||t||d  |}t||t||d  |}d}nt|||}t|||}d}dD ]}d|fD ]}||	||||||d\}}}|d	ksJJ ||krU|j }n|}|dkrstj||fd	d}tj||fd	d}|| }ntj||fdd}tj||fdd}|| }t|||dd ||fdkr||	||||\}}}|d	ksJ t	|| t	|| q3q-tt||	||||dd tt||	||||dd q[qd S )Nr   r   rB   r&   r   r   )tpqrttpmqrtr   r   rC   rh   rN  r   re   rb   r  r   r  r   ru   r  rH  r/  r  )r   r   r   r   r*   r(   r  r   r$   r   r   r   r   r
   rb   r1  r   r   r   r   ) rO   r   r,   r   rH  r|  r  r  r  lrP   rm   r  rV   ZB_pentZb_pentr   rU  r.  re   r  r  r0  ro   rn   r\   r  ZcdZCDZqCDr  Z	d_defaultr-   r-   r.   test_tpqrt_tpmqrt  sx    *"$





zTestBlockedQR.test_tpqrt_tpmqrtN)r|   r}   r~   r3   r  r  r-   r-   r-   r.   r    s    >r  c                  C     t d ttD ]\} }d}d}td|d}| dkr8t||| |dt||| |  }|| j }nt||| |}||j }||\}}}}	t|}
d|
|| d || d f< t	|	d d	t
t
jj }d	t
t
jj }| d
v r~|n|}t||d  d d |d f |
 j|
 d|d ||dd\}}}}	t|}d||| d || d f< t	|	d d	t
t
jj }d	t
t
jj }| d
v r|n|}t||d  d d |d f || j d|d qd S )Nr   r_   rC   pstrfr   rB   r&   rN    r   rC   r   r]  r   r   r   r$   r   r*   r1  rb   r   r   r(   r   float32r   r   r   r   )r   r,   r   r   r  rH  rn   pivr_crV   r  single_atoldouble_atolr   r   r-   r-   r.   
test_pstrfK  6   ,

2
4r  c                  C   r  )Nr   r_   rC   pstf2r   rB   r&   rN  r  r  r   r]  r  )r   r,   r   r   r  rH  rn   r  r  rV   r  r  r  r   r   r-   r-   r.   
test_pstf2s  r  r  c                  C   sV  t g dg dg dg dg} t g dg dg dg}ttD ]\}}|dk rBt g d	g d
g dg dg}||}n't jg dg dg dg|d}|t g dg dg dgd 7 }||}td|d}||\}}}}	}
}|dk rt| ||d d d f | | ddd q#t|||d d d f | | ddd q#d S )N)g      ?r   g1w-!?gd`TRۿ)r   gsrg  rg  )gs?rg  g2%䃮g,eX)rg  gsFg%ug??)y/nҿ&?yDioɴ?Af?y o_[ Acп)ysֿAfҿyPkw?JY8y5;NёCl?)yYڊ?1*?y=yXѿ@a+?yh oſFxrC   )g   ЈBg   tBgffffff @g   ٓ )      @gg#fDgffffff)gHzG?gQg'Vgp=
ף)g(\rc  gS7нr  )gq=
ףpg   Ag(\)g333333g   Bg333333ÿ)gZ9=gQgֽr   )gffffff@g   tޅBr   )g(\g   Zgq=
ףp?)gEop=gQ?gZEqҽr&   geequr   r{  r   )r(   ri   r   r   r*   r$   r   )desired_realdesired_cplxr   r,   rH  r  r   rn   ZrowcndZcolcndamaxrV   r-   r-   r.   
test_geequ  sP   





  r  c            
         s   t g d} ttD ]I\}}t jd|d}||dk rdnd t j fddtd	d
D |d}|t t |7 }td|d}||\}}}}	t	t 
|t|  qd S )N)
r   r   r   r   r   r   rh   rh   r   r   r_   r   rC   r   r&   c                    s   g | ]} d |  qS )r   r-   r  r3  r-   r.   r    r  ztest_syequb.<locals>.<listcomp>rF   syequb)r(   ri   r   r   r
   r   Zrot90r   r$   r   log2r*   r   )
Zdesired_log2sr   r,   rH  r\   r  r   scondr  rV   r-   r  r.   test_syequb  s   "r  Tz.Failing on some OpenBLAS version, see gh-12276)reasonc               	   C   s   t dgd dgd  t jt dddd  } t| \}}}}t|d tt |d	d
gd d	g dgd   t dt t 	dd d } d| d< d| d< tj
| t jdd\}}}}t|d tt |g d d S )NrC   rF   i  rJ   rB   )r  r&   r   rN  rg  r  rG   y                i   rF   rF   y              0@)rF   r   r]  )r   rh   rh   r   r   r  r   rh   rh   r   r   )r(   r   r   r   Zzheequbr   r   r  rw   rO  Zcheequbr*   	complex64)rH  r   r  r  rV   r-   r-   r.   test_heequb  s   2
( 
r  c                  C   s:  t jd d} t j| }t j| t j| d  }ttD ]z\}}|dk r>t j| | }||}|| }||}nt j| | t j| | d  }||}|| }||}td|d}td|d}||dd	\}	}
}}||	||
|dd
\}}|dk rt|||| dd q t|||| dd q d S )Nr   r_   r&   rC   getc2r   gesc2r   )r   )Zoverwrite_rhsrE   rf   )	r(   r)   r   r   r   r   r*   r$   r   )r   r  r  r   r,   rH  rm   r  r  Zlurp  ZjpivrV   rq   rK   r-   r-   r.   test_getc2_gesc2  s4   
 



r  r   )rG   rF   r  jobarG   joburE   jobvjobrrB   jobpc              
   C   s  t d | \}}	dt|j }
t| |}td|d}|dk }|dk }|dko*||	k}t|}|dko9| o9| }|dkoD|oA| oD|}|dkoO|oL| oO|}|rUd}n	|sY|r\d}nd	}|dkrt|dkrttt||||||||	 dS ||||||||d
\}}}}}}t	|| |s	|d	 |d  |d|	  }t
|t|dd|
d |dkr|ddd|	f }|r|rt
|t| | j ||
d |rt
| j| t|	|
d |rt
| j| t|	|
d t	|d	 tj| t	|d t| t	|d d	 dS dS )a  Test the lapack routine ?gejsv.

    This function tests that a singular value decomposition can be performed
    on the random M-by-N matrix A. The test performs the SVD using ?gejsv
    then performs the following checks:

    * ?gejsv exist successfully (info == 0)
    * The returned singular values are correct
    * `A` can be reconstructed from `u`, `SIGMA`, `v`
    * Ensure that u.T @ u is the identity matrix
    * Ensure that v.T @ v is the identity matrix
    * The reported matrix rank
    * The reported number of singular values
    * If denormalized floats are required

    Notes
    -----
    joba specifies several choices effecting the calculation's accuracy
    Although all arguments are tested, the tests only check that the correct
    solution is returned - NOT that the prescribed actions are performed
    internally.

    jobt is, as of v3.9.0, still experimental and removed to cut down number of
    test cases. However keyword itself is tested externally.
    r   r   gejsvr   rC   rB   r   r   r   )r  r  r  r  jobtr  NF)r   r$  )r   r(   r   r   r/   r$   r  r   r   r   r   r   r   r1  rb   identityrs  Zmatrix_rankZcount_nonzero)r   r,   r  r  r  r  r  r  r   r   r   rH  r  ZlsvecZrsvecZl2tranZ
is_complexZinvalid_real_jobvZinvalid_cplx_jobuZinvalid_cplx_jobvZexit_statussvar)  r   r   r   rV   Zsigmar-   r-   r.   test_gejsv_general
  sV   !


	"r  c                 C   sX  t d| d}|d\}}}}}}t|d t|jd t|jd t|tjdg| d tjd| d}||\}}}}}}t|d t|jd t|jd t|tjdg| d tjd| d}||\}}}}}}t|d t|jd t|jd t|tjg | d ttdd	d		| }t
||j }|d
}	||}
t||	 dS )z*Test edge arguments return expected statusr  r   r   r   rB   rB   rB   r-  r   r_   rH  N)r$   r   r+   r(   ri   r   sinrO  r  r*   Zasfortranarrayrb   r2  r   )r,   r  r  r)  r   r   r   rV   rH  ZAcr2   r-   r-   r.   test_gejsv_edge_argumentsv  s.   



r  kwargsrJ   r  c                 C   s2   t jdtd}tdtd}tt||fi |  dS )z-Test invalid job arguments raise an Exception)rC   rC   r   r  Nr  )r  rH  r  r-   r-   r.    test_gejsv_invalid_job_arguments  s   
r  zA,sva_expect,u_expect,v_expect)g)\(@gp=
ףgffffff?g
ףp=
)gQ?gQgGz?g(\)gQ޿gQgGz?gzGʿ)gQ?gQ?gHzG?g)\(?)ggq=
ףp@g333333rb  )ףp=
?g(\re  g(\)g cZB#@gI.!v@g?ܵ?rf  )gC?g=yX5gc=yXga4?)gB`"?g:pΈҞgʡE?gn4@?)g[B>٬?g٬\m?gJ{/L?gOe?)gc]Fgꕲq׿g\m?gfc]F)g؁sFڿgZB>?g0L
F%?gq=
ףp)g ?gR!u?guVſg&Sٿ)gǘ?gV-g	^)p?g()gFx$g6[ ٿgUN@giq?)g1Zd?gOnӿgΈ?g_vO?)g}?5^Iؿg58EGr?gi o?g7[ Ac                 C   sT   d}t d| jd}|| \}}}}	}
}t|||d t|||d t|||d dS )z~
    This test implements the example found in the NAG manual, f08khf.
    An example was not found for the complex case.
    r{  r  r   r$  N)r$   r,   r   )rH  Z
sva_expectZu_expectZv_expectr   r  r  r)  r   r   r   rV   r-   r-   r.   test_gejsv_NAG  s   r  c           !   	   C   s  t d d}dt| j }t|d f| d}t|f| d}t|d f| d}| | | g}t|t|d t|d }tj|}|| }	t	d| d\}
}|
|||\}}}}}}t
||d  t
||d  t
||d	  t|dt|d t|d	 }tj|| d}t|D ]2\}}|| d }|d d ||gf |d d ||gf< |d d |f  |d d |d f | 7  < qd|d d }}|d d ||gf |d d ||gf< t||| |d
 |	 }|||||||	\}}t
|	| t|||d
 | tv rd}|j| }n	d}| j| }||||||||d\}}t|||d
 tt |
|d d || W d    n	1 sIw   Y  tt |
||d d | W d    n	1 shw   Y  tt |
|||d d  W d    n	1 sw   Y  tt |
|d |d d |d  W d    n	1 sw   Y  d|d< d|d< |
|||\}}}}}} tj||d  dkd||d   d S )Nr   r_   r   rB   r   rh   gttrfgttrsr   rC   r$  rb   re   r  z3?gttrf: _d[info-1] is {}, not the illegal value :0.)r   r(   r   r   r/   r2  r   r)   r   r$   r   r
   r   r   r   rb   r1  r   r   r   Ztestingr   r  )!r,   r   r   dur\   dldiag_cpyrH  rq   rm   r  r  _dl_d_dudu2rp  rV   r  r   r   r   r  Zb_cpyx_gttrsro   Zb_transZ__dlZ__dZ__duZ_du2Z_ipiv_infor-   r-   r.   test_gttrf_gttrs  sl   "$$.$





r  z1du, d, dl, du_exp, d_exp, du2_exp, ipiv_exp, b, x)g @rg  ffffff?r   )r   rb  g      ffffff@)333333@@r   g      )rb  r  r  r	  )r
  r  rH   gC>)rh   r  rI   )rC   rD   rE   rF   rF   g@gffffff@      g%@g@g	r  gffffff&g3@r  rF   rH   rD   r   r   )       @             @      ?            ?      ?      )?r  ffffff
@333333ӿ333333@ffffff
?)      ?             ?      ?       @      r  )r  r  r  r  )r  r  r  r  y ~:pffffff?)r  r  r  y333333@      y@@y333333@3333332@y333333yffffff-ffffff#@y      333333yfffff?@y333333"@y      𿚙?y      ffffff(@r  r  y      @      y      ?       @y      @      @r  y             r  r  y       @       c	                 C   s   t d| d | d f\}	}
|	||| \}}}}}}t|| t|| t||dd t|| |
||||||\}}t|| d S )Nr  r   r{  r$  )r$   r   )r  r\   r  Zdu_expZd_expZdu2_expZipiv_exprm   rq   r  r  r   r  r  r  rp  rV   r  r-   r-   r.   0test_gttrf_gttrs_NAG_f07cdf_f07cef_f07crf_f07csf(  s   2


r  ))rD   rH   )rH   rD   r   c                 C   r   )Ngeqrfp_lworkr   r   r   r   )r,   r+   r  r   r   r   rV   r-   r-   r.   test_geqrfp_lworkg  r   r  zddtype,dtypec                 C   s\  t d dt|j }d}t|f| d }t|d f|}t|t|d tt|d }| | g}td|d}|||\}	}
}t	||d	  t	||d  t
|d	d
|d t|
dtt| }t|	}t||| | j |d t|f|}|| }td|d}||	|
 |\}}t
|d	d|d t|||d d S )Nr   r   r_   rE   rB   rh   pttrfr   r   zpttrf: info = {}, should be 0)err_msgr$  pttrszpttrs: info = {}, should be 0)r   r(   r   r   r/   r   r1  r2  r$   r   r   r  r   r   rl   rb   )ddtyper,   r   r   r\   rS  rH  r  r  r  _erV   r   r  rq   rm   r  _xr-   r-   r.   test_pttrf_pttrsp  s*   (
r"  c                 C   s`   d}t d|d}t|f| d }t|d f|}tt||d d | tt|||d d  d S )Nr_   r  r   rC   rB   rh   )r$   r/   r   r   )r  r,   r   r  r\   rS  r-   r-   r.   *test_pttrf_pttrs_errors_incompatible_shape  s   r#  c           	      C   s   d}t d|d}t|f| d }t|d f|}d|d< d|d< |||\}}}t||d  dd||d   t|f| }|||\}}}t|dkd d S )	Nr_   r  r   rC   rB   r   z3?pttrf: _d[info-1] is {}, not the illegal value :0.z2?pttrf should fail with non-spd matrix, but didn't)r$   r/   r   r  r   )	r  r,   r   r  r\   rS  r  r   rV   r-   r-   r.   'test_pttrf_pttrs_errors_singular_nonSPD  s   r$  z%d, e, d_expect, e_expect, b, x_expect)rE   r_      r   rF   )r   r  r  rI   )rE   rJ   r      rB   )r  gK=Ur  rf  r_   rC      A      g      @rh   r  )r&  )   .      )y      0@      0@y      2@      "      ?      )r&  rJ   rB   rE   )r  r  r-  y      P@      0@y      0      @y     @W@      O@y     N@     Py     S@      Ty     Q@     Ry      ,@      ;y     A@      .@y             r  c                 C   s   d}t d|d d}|| |\}}	}
t|||d t|	||d t d|d d}|||	 |\}}
t|||d |jtv rQ|||	|dd\}}
t|||d d S d S )	Nr{  r  r   r   r$  r  rB   r]  )r$   r   r1  r,   r'   )r\   rS  d_expectZe_expectrm   Zx_expectr   r  r  r   rV   r  r!  r-   r-   r.   test_pttrf_pttrs_NAG  s   
r/  c                 C   s  |dkrUt ||f| }|tt|d|   }|| j d }t|d }t |f|d }t |d f|}t|t|d t|d }|| | j }	|}
n4t |f|}t |d f|}|d }t|t|d t|d }	t|t|d t|d }
|||	|
fS )NrB   rE   rC   rh   )r/   r(   r   r   r1  rb   r   )r,   realtyper   	compute_zZA_eigZvrr\   rS  ZtrirH  zr-   r-   r.   pteqr_get_d_e_A_z  s    """r3  zdtype,realtyper1  c                 C   s   t d dt| j }td| d}d}t| |||\}}}}	||||	|d\}
}}}t|dd| tt	t
|d t	|
|d	 |rkt|t|j t||d	 t|t|
 t|j ||d	 d
S d
S )a  
    Tests the ?pteqr lapack routine for all dtypes and compute_z parameters.
    It generates random SPD matrix diagonals d and e, and then confirms
    correct eigenvalues with scipy.linalg.eig. With applicable compute_z=2 it
    tests that z can reform A.
    r   r  pteqrr   r_   r\   rS  r2  r1  r   zinfo = {}, should be 0.r$  N)r   r(   r   r   r$   r3  r   r  r   sortr   r1  rb   r  r   )r,   r0  r1  r   r4  r   r\   rS  rH  r2  d_pteqre_pteqrz_pteqrrV   r-   r-   r.   
test_pteqr	  s    
"
r:  c                 C   sZ   t d td| d}d}t| |||\}}}}||d |||d\}	}
}}|dks+J d S )Nr   r4  r   r_   rE   r2  r1  r   r   r$   r3  r,   r0  r1  r4  r   r\   rS  rH  r2  r7  r8  r9  rV   r-   r-   r.   test_pteqr_error_non_spd,	  s   r>  c           	      C   s   t d td| d}d}t| |||\}}}}tt||d d |||d tt|||d d ||d |rEtt||||d d |d d S d S )Nr   r4  r   r_   rh   r;  )r   r$   r3  r   r   )	r,   r0  r1  r4  r   r\   rS  rH  r2  r-   r-   r.   "test_pteqr_raise_error_wrong_shape;	  s    r?  c                 C   sf   t d td| d}d}t| |||\}}}}d|d< d|d< |||||d\}	}
}}|dks1J d S )Nr   r4  r   r_   r   r;  r<  r=  r-   r-   r.   test_pteqr_error_singularJ	  s   r@  zcompute_z,d,e,d_expect,z_expect)gp=
ף@r  gq=
ףp?r  )g\(\	@g
ףp=
g?)gŏ1w- @gR'?g/n?g&䃞ͪ?)g cZB>?gCl?g:pΈڿg??)gaTR'?gSۿg}гY?g%uο)g\mg٬\m?gAf?gL
F%u)gǘgŏ1w-!?g333333?gz6?c                 C   sx   d}t d|jd}t|t|d t|d }||||| d\}}	}
}t|||d tt|
t||d dS )	zb
    Implements real (f08jgf) example from NAG Manual Mark 26.
    Tests for correct outputs.
    r{  r4  r   rB   rh   r5  r$  N)r$   r,   r(   r   r   rw   )r1  r\   rS  r.  Zz_expectr   r4  r2  r  r   Z_zrV   r-   r-   r.   test_pteqr_NAG_f08jgfY	  s   "rA  matrix_size)r   )rH   rG   rG   rG   c              
   C   s  t jd dt | j }dt | j }td| d}td| d}|\}}t||f| d}||\}	}
}t |	}||kr[t j||f| d}|	|d d d |f< |||
|dd }n||	d d d |f |
|dd }t	|| ||d	 t	t 
|jd || j ||d
 t	|t ||d	 tt t |t tt |k t|dk t||f| dd }t|\}}||\}}}tt t |dk ot t |dk d S )Nr      r   geqrfpr   Zorgqr)r]   r   r   r   r   rh   )r(   r)   r   r   r   r$   r/   r   r   r   r
   r+   r1  rb   r   allr   rN   r   r   )r,   rB  r   r   rE  Zgqrr   r   rH  Zqr_Ar]   rV   r   Zqqrr  Z
A_negativeZr_rq_negZq_rq_negZrq_A_negZtau_negZinfo_negr-   r-   r.   test_geqrfpr	  s6   
"(rG  c                  C   s(   t g } td| jd}tt||  d S )NrE  r   )r(   ri   r$   r,   r   r   )ZA_emptyrE  r-   r-   r.   #test_geqrfp_errors_with_empty_array	  s   
rH  driver)ZevZevdZevrZevxpfxsyhec              
   C   s   d}| dkrt nt}t| | d |d d}t| | d |d d}zt||dd t||dd W d S  tyQ } ztd| | | W Y d }~d S d }~ww )	N  rK  _lworkr   r   rB   r]  ({}_lwork raised unexpected exception: {}r   r'   r$   r    r   r4   Zfailr  rJ  rI  r   r,   Zsc_dlwZdz_dlwrS  r-   r-   r.   test_standard_eigh_lworks	  s   rR  gvZgvxc              
   C   s   d}| dkrt nt}t| | d |d d}t| | d |d d}zt||dd t||dd W d S  tyQ } ztd	| | | W Y d }~d S d }~ww )
NrM  rK  rN  r   r   rB   r   r  rO  rP  rQ  r-   r-   r.   test_generalized_eigh_lworks	  s   rT  dtype_r   )rB   r_   r   r  c                 C   sx   t d td|}|| }| tv rdnd}|d }t|| d}t||||}|dkr,|n|f}tdd |D s:J d S )	Nr   r   orun	csd_lworkr   c                 S   s   g | ]}|d kqS r   r-   r  r-   r-   r.   r  	  s    z*test_orcsd_uncsd_lwork.<locals>.<listcomp>)r   r   r   r$   r    rF  )rU  r   rR   r  rJ  dlwr  lwvalr-   r-   r.   test_orcsd_uncsd_lwork	  s   
r[  c              
   C   s  d\}}}| t v rdnd}|dkrt|nt|}t|d |d f| d\}}t||||}|dkr8d|inttddg|}	||d |d |f |d ||d f ||d d |f ||d |d f fi |	\
}
}}}}}}}}}|d	ks|J t||}t||}t	t	||t	|| || }t	||| }t	||| | }t	|| || }t	|| || | }t
j||f| d}| d
}t|D ]}||||f< qt|D ]}|||| || f< qt|D ]}| ||| | || | | | | f< qt|D ]}|||| | | || | f< qt|D ]N}t
|| ||| || f< t
|| ||| | || | | f< t
||  ||| || | | | f< t
|| ||| | || f< q|| | }t||ddt
| j d d S )N)rD  P      rV  rW  ZcsdrX  r   r   Zlrworkr   r   rN  g     @r   )r   r!   Zrvsr"   r$   r    dictr_  r   r
  r(   r   r   Zcosr  r   r   r   )rU  r   rR   r  rJ  XZdrvrY  rZ  ZlwvalsZcs11Zcs12Zcs21Zcs22ZthetaZu1Zu2Zv1tZv2trV   r  ZVHr   Zn11Zn12Zn21Zn22SZoner   ZXcr-   r-   r.   test_orcsd_uncsd	  sJ   
T

,$*,& ra  
trans_boolFfactr  r   c                  C   s  t d dt| j }td| d\}}d}t|d f| d}t|f| d}t|d f| d}	t|dt| t|	d }
t|df| d}|rR| tv rPd	nd
nd}|r[|
 j	n|
| }|
 |
 |	
 |
 g}|dkrw||||	ndgd \}}}}}}||||	||||||||d}|\
}}}}}}}}}}t|dkd| t||d  t||d  t|	|d  t||d  t|||d tt|ddud| t|jd |jd kd|jd |jd  t|jd |jd kd|jd |jd  dS )aS  
    These tests uses ?gtsvx to solve a random Ax=b system for each dtype.
    It tests that the outputs define an LU matrix, that inputs are unmodified,
    transposal options, incompatible shapes, singular matrices, and
    singular factorizations. It parametrizes DTYPES and the 'fact' value along
    with the fact related inputs.
    r   r   gtsvxr  r   r_   rB   rh   rC   rb   re   r   r  NrG   rc  ro   dlfdfdufr  rp  r   z ?gtsvx info = {}, should be zerorD   r$  __len__T rcond should be scalar but is {}z!ferr.shape is {} but shoud be {},z!berr.shape is {} but shoud be {},)r   r(   r   r   r$   r/   r   r   r1  rb   r2  r   r  r   r   r   r+   ) r,   rb  rc  r   re  r  r   r  r\   r  rH  rq   ro   rm   Z
inputs_cpydlf_df_duf_du2f_ipiv_info_	gtsvx_outrg  rh  ri  du2frp  x_solnrv  ferrberrrV   r-   r-   r.   
test_gtsvx
  sB   "rw  c                 C   s  t d td| d\}}d}t|d f| d}t|f| d}t|d f| d}t|dt| t|d }	t|df| d}
| tv rFdnd	}|rO|	 jn|	|
 }|d
kr]||||nd gd \}}}}}}||||||||||||d}|\
}}}}}}}}}}|dkrd|d< d|d< |||||}|\
}}}}}}}}}}|dksJ dd S |d
krd|d< d|d< d|d< |||||||||||d
}|\
}}}}}}}}}}|dksJ dd S d S )Nr   rd  r   r_   rB   rh   rC   rb   re   r  rG   rf  r   r   z&info should be > 0 for singular matrix)rc  rg  rh  ri  r  rp  )r   r$   r/   r(   r   r   r1  rb   )r,   rb  rc  re  r  r   r  r\   r  rH  rq   ro   rm   rl  rm  rn  ro  rp  rq  rr  rg  rh  ri  rs  rp  rt  rv  ru  rv  rV   r-   r-   r.   test_gtsvx_error_singularT
  sB   "
rx  c                 C   s0  t d td| d\}}d}t|d f| d}t|f| d}t|d f| d}t|dt| t|d }	t|df| d}
| tv rFdnd	}|rO|	 jn|	|
 }|d
kr]||||nd gd \}}}}}}|dkrtt	||d d ||||||||||d tt	|||d d |||||||||d tt	||||d d ||||||||d tt
|||||d d |||||||d d S tt	||||||||d d ||||d tt	|||||||||d d |||d tt	||||||||||d d ||d tt	|||||||||||d d |d d S )Nr   rd  r   r_   rB   rh   rC   rb   re   r  rG   r   rf  )r   r$   r/   r(   r   r   r1  rb   r   r   r   )r,   rb  rc  re  r  r   r  r\   r  rH  rq   ro   rm   rl  rm  rn  ro  rp  rq  r-   r-   r.   "test_gtsvx_error_incompatible_size
  sZ   "

ry  zdu,d,dl,b,xc              
   C   sB   t d|jd}|||| |}|\
}}}	}
}}}}}}t|| d S )Nre  r   r$   r,   r   )r  r\   r  rm   rq   re  rr  rg  rh  ri  rs  rp  rt  rv  ru  rv  rV   r-   r-   r.   test_gtsvx_NAG
  s   r{  zfact,df_de_lambdac                 C      t d|jd| |S Nr  r   r$   r,   r\   rS  r-   r-   r.   <lambda>
  
    r  c                 C      dS N)NNNr-   r  r-   r-   r.   r  
      c                 C   s  t d dt| j }td| d}d}t|f|d }t|d f| }t|t|d tt|d }	t|d	f| d}
|	|
 }|||\}}}| | | g}|||||||d
\}}}}}}}t	||d  t	||d  t	||d	  t
|dkd| t|
| t|dtt| }t|}t|	|| t|j |d t|drJ d|t
|jdkd|j|
jd  t
|jdkd|j|
jd  dS )a  
    This tests the ?ptsvx lapack routine wrapper to solve a random system
    Ax = b for all dtypes and input variations. Tests for: unmodified
    input parameters, fact options, incompatible matrix shapes raise an error,
    and singular matrices return info of illegal value.
    r   r   ptsvxr   rF   rE   rB   rh   rC   rc  rh  efr   zinfo should be 0 but is {}.r$  rj  rk  )rC   z#ferr.shape is {} but shoud be ({},)z#berr.shape is {} but shoud be ({},)N)r   r(   r   r   r$   r/   r   r1  r2  r   r   r  r   r   r   rb   r   r+   )r,   r0  rc  df_de_lambdar   r  r   r\   rS  rH  rt  rm   rh  r  rV   r  rq   rv  ru  rv  r   r  r-   r-   r.   
test_ptsvx
  s>   (


r  c                 C   r|  r}  r~  r  r-   r-   r.   r    r  c                 C   r  r  r-   r  r-   r-   r.   r    r  c              
   C   s   t d td| d}d}t|f|d }t|d f| }t|t|d tt|d }t|df| d}	||	 }
|||\}}}tt||d d ||
|||d	 tt|||d d |
|||d	 tt||||
d d |||d	 d S )
Nr   r  r   rF   rE   rB   rh   rC   r  )	r   r$   r/   r(   r   r1  r   r   r   )r,   r0  rc  r  r  r   r\   rS  rH  rt  rm   rh  r  rV   r-   r-   r.   test_ptsvx_error_raise_errors  s   (  $r  c                 C   r|  r}  r~  r  r-   r-   r.   r  2  r  c                 C   r  r  r-   r  r-   r-   r.   r  4  r  c                 C   sf  t d td| d}d}t|f|d }t|d f| }t|t|d tt|d }t|df| d}	||	 }
|||\}}}|d	krd
|d< |||\}}}||||
\}}}}}}}|d
kri||kskJ t|f|}||||
\}}}}}}}|d
kr||ksJ d S |||\}}}d
|d
< d
|d
< ||||
|||d\}}}}}}}|d
ksJ d S )Nr   r  r   rF   rE   rB   rh   rC   r   r   rD   r  )r   r$   r/   r(   r   r1  )r,   r0  rc  r  r  r   r\   rS  rH  rt  rm   rh  r  rV   rq   rv  ru  rv  r-   r-   r.   test_ptsvx_non_SPD_singular.  s0   (
r  zd,e,b,xc                 C   s6   t d|jd}|| ||\}}}}}	}
}t|| d S )Nr  r   rz  )r\   rS  rm   rq   r  rh  r  Zx_ptsvxrv  ru  rv  rV   r-   r-   r.   test_ptsvx_NAGZ  s   r  r   c                    s  t d t| jd }d\ }t  g| d}t |g| d}| j| tj | d| d  }|rK fddt D  fddt D f}nd	d td
 d
 D dd td
 d
 D f}|| }t	d| dd\}}	}
}}|	 ||d\}}t
|d t||d| }t||d|d | ||d\}}t
|d t|| }t||d|d |
 |||d\}}t
|d t||}t||d|d | |||d\}}t
|d t||d|d tj|d
}| |||d\}}t
|d ttd
| tjj|d
d | d
k  d S )Nr   r   )r_   rE   r   r   c                    s    g | ]}t | D ]}|q	qS r-   r   r  yrq   r  r-   r.   r         z5test_pptrs_pptri_pptrf_ppsv_ppcon.<locals>.<listcomp>c                    s    g | ]}t | D ]}|q	qS r-   r  r  r  r-   r.   r    r  c                 S   s   g | ]}t |D ]}|qqS r-   r  r  r-   r-   r.   r    s    rB   c                 S   s"   g | ]}t |D ]}|d  qqS r  r  r  r-   r-   r.   r    s   " )ppsvpptrfpptrspptrippconZ	preferred)r,   Zilp64r]  r   r   )rq  r   rr  )r   r(   r   r   r/   r1  rb   r
   r   r$   r   r   r   r   r   rs  r   r   rw   rt  )r,   r   r   r   rP   rm   r  Zapr  r  r  r  r  ZulrV   ZaulZuliZaulirq   ZbxZxvrq  rv  r-   r  r.   !test_pptrs_pptri_pptrf_ppsv_ppconx  sL   $





,r  c                 C   s  t d t| jd }d}t||g| d}t||g| d}td| d\}}|dd ||ddd	}t|d
 d |d }|d }	|d }
|d }|d |	d  }|d |	d  }| tv rrt|t	|d|d t|	t	|	d|d t|
| |
 j |d|d t|
|	 |
 j |d|d |||	|
|dd}t|d
 d |d }|d }	|d }
|d }| tv rt|t	|d|d t|	t	|	d|d t|
| |
 j |d|d t|
|	 |
 j |d|d t|d |	d  |d|d t|d |	d  |d|d d S )Nr   r   r_   r   )ggestgexcc                 S   s   d S r  r-   )rq   r-   r-   r.   r    r  z!test_gges_tgexc.<locals>.<lambda>F)r   Zoverwrite_brh   r   rB   r  r   rs   rC  r   rG   rC   rD   r  )r   r(   r   r   r/   r$   r   r'   r   r   r1  rb   )r,   r   r   rP   rm   r  r  rl  r   r  r  r2  Zd1Zd2r-   r-   r.   test_gges_tgexc  s@    r  r   )r;  r9  r>  	functoolsr   Znumpy.testingr   r   r   r   r   r   r4   r	   r   Znumpyr(   r
   r   r   r   r   r   r   r   Znumpy.randomr   r   r   Zscipy.linalgr   r1   r   r   r   r   r   r   r   r   r   r   Zscipy.linalg.lapackr    Zscipy.statsr!   r"   Zscipy.sparseZsparser	  r#   r0   ImportErrorr$   Zscipy.linalg.blasr%   r  r   r   r  Z
complex128r'   r   r/   r?   rA   r   r   r  r  r   r   r   r   r   r!  r*  r5  ZxslowrC  rD  rX  rm  rw  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  Zskipifr  r  r   r  r  r  ri   r  r  r  r  r_  r"  r#  r$  r/  r3  r:  r>  r?  r@  rA  rG  rH  rR  rT  r[  ra  rw  rx  ry  r{  r  r  r  r  r  r  r-   r-   r-   r.   <module>   s   (4` t  **
"DO1")::) %# ((-
e
#





\




+
/


	



@.:0
0


3




%

.