o
    :aI                     @   s   d Z ddlmZ ddlZddlZddlZddlmZ ej	edddd Z
G d	d
 d
eZdd Zdd Zdd Zdd Z	d-ddZG dd dZ	d.ddZd/ddZdd  Zd!d" Zd0d$d%Zd&d' Zd(d) Zd1d+d,ZdS )2zO
A module providing some utility functions regarding Bezier path manipulation.
    )	lru_cacheN)_api   )maxsizec                 C   sF   || krdS t || | }td|d }t| d | | tS )Nr      )minnparangeZprodZastypeint)nki r   3/usr/lib/python3/dist-packages/matplotlib/bezier.py_comb   s
   r   c                   @   s   e Zd ZdS )NonIntersectingPathExceptionN)__name__
__module____qualname__r   r   r   r   r      s    r   c                    s   ||  ||  }|| ||  }	|| }
}|| }}|
| ||   t  dk r.td|| }}| |
}} fdd||||fD \}}}}|| ||	  }|| ||	  }||fS )z
    Return the intersection between the line through (*cx1*, *cy1*) at angle
    *t1* and the line through (*cx2*, *cy2*) at angle *t2*.
    g-q=zcGiven lines do not intersect. Please verify that the angles are not equal or differ by 180 degrees.c                    s   g | ]}|  qS r   r   ).0r   Zad_bcr   r   
<listcomp>9       z$get_intersection.<locals>.<listcomp>)abs
ValueError)Zcx1Zcy1cos_t1sin_t1Zcx2Zcy2cos_t2sin_t2Z	line1_rhsZ	line2_rhsabcdZa_Zb_Zc_Zd_xyr   r   r   get_intersection    s   
"r%   c                 C   sl   |dkr
| || |fS || }}| |}}|| |  || | }	}
|| |  || | }}|	|
||fS )z
    For a line passing through (*cx*, *cy*) and having an angle *t*, return
    locations of the two points located along its perpendicular line at the
    distance of *length*.
            r   )cxcyZcos_tZsin_tlengthr   r   r   r   x1y1Zx2Zy2r   r   r   get_normal_pointsA   s   r,   c                 C   s(   | d d d|  | dd  |  }|S )Nr   r   )betatZ	next_betar   r   r   _de_casteljau1Z   s   $r0   c                 C   s^   t | } | g}	 t| |} ||  t| dkrnq	dd |D }dd t|D }||fS )z
    Split a Bezier segment defined by its control points *beta* into two
    separate segments divided at *t* and return their control points.
    Tr   c                 S      g | ]}|d  qS )r   r   r   r.   r   r   r   r   k   r   z&split_de_casteljau.<locals>.<listcomp>c                 S   r1   )r-   r   r2   r   r   r   r   l   r   )r   asarrayr0   appendlenreversed)r.   r/   Z	beta_listZ	left_betaZ
right_betar   r   r   split_de_casteljau_   s   


r7   r&         ?{Gz?c                 C   s   | |}| |}||}||}||kr||krt d	 t|d |d  |d |d  |k r5||fS d||  }	| |	}
||
}||A rN|	}|
}|}n|	}|
}|}q)a  
    Find the intersection of the Bezier curve with a closed path.

    The intersection point *t* is approximated by two parameters *t0*, *t1*
    such that *t0* <= *t* <= *t1*.

    Search starts from *t0* and *t1* and uses a simple bisecting algorithm
    therefore one of the end points must be inside the path while the other
    doesn't. The search stops when the distance of the points parametrized by
    *t0* and *t1* gets smaller than the given *tolerance*.

    Parameters
    ----------
    bezier_point_at_t : callable
        A function returning x, y coordinates of the Bezier at parameter *t*.
        It must have the signature::

            bezier_point_at_t(t: float) -> tuple[float, float]

    inside_closedpath : callable
        A function returning True if a given point (x, y) is inside the
        closed path. It must have the signature::

            inside_closedpath(point: tuple[float, float]) -> bool

    t0, t1 : float
        Start parameters for the search.

    tolerance : float
        Maximal allowed distance between the final points.

    Returns
    -------
    t0, t1 : float
        The Bezier path parameters.
    z3Both points are on the same side of the closed pathTr   r         ?)r   r   Zhypot)bezier_point_at_tinside_closedpatht0t1	tolerancestartendZstart_insideZ
end_insideZmiddle_tZmiddleZmiddle_insider   r   r   *find_bezier_t_intersecting_with_closedpathq   s,   &(rB   c                   @   s`   e Zd ZdZdd Zdd Zdd Zedd	 Zed
d Z	edd Z
edd Zdd ZdS )BezierSegmentz
    A d-dimensional Bezier segment.

    Parameters
    ----------
    control_points : (N, d) array
        Location of the *N* control points.
    c                    sV   t | _ jj\ _ _t  j _ fddt jD } jj	| j	 _
d S )Nc                    s:   g | ]}t  jd  t |t  jd  |   qS )r   )mathZ	factorial_N)r   r   selfr   r   r      s
    z*BezierSegment.__init__.<locals>.<listcomp>)r   r3   _cpointsshaperE   _dr	   _ordersrangeT_px)rG   control_pointsZcoeffr   rF   r   __init__   s   
zBezierSegment.__init__c                 C   s>   t |}t jd| | jddd t j|| j | j S )a&  
        Evaluate the Bezier curve at point(s) t in [0, 1].

        Parameters
        ----------
        t : (k,) array-like
            Points at which to evaluate the curve.

        Returns
        -------
        (k, d) array
            Value of the curve for each point in *t*.
        r   Nr-   )r   r3   ZpowerZouterrK   rN   rG   r/   r   r   r   __call__   s   
zBezierSegment.__call__c                 C   s   t | |S )zX
        Evaluate the curve at a single point, returning a tuple of *d* floats.
        )tuplerQ   r   r   r   
point_at_t   s   zBezierSegment.point_at_tc                 C      | j S )z The control points of the curve.)rH   rF   r   r   r   rO         zBezierSegment.control_pointsc                 C   rU   )zThe dimension of the curve.)rJ   rF   r   r   r   	dimension   rV   zBezierSegment.dimensionc                 C   s
   | j d S )z@Degree of the polynomial. One less the number of control points.r   )rE   rF   r   r   r   degree   s   
zBezierSegment.degreec                 C   s|   | j }|dkrtdt | j}t|d dddf }t|d dddf }d||  t|| }t||| | S )a  
        The polynomial coefficients of the Bezier curve.

        .. warning:: Follows opposite convention from `numpy.polyval`.

        Returns
        -------
        (n+1, d) array
            Coefficients after expanding in polynomial basis, where :math:`n`
            is the degree of the bezier curve and :math:`d` its dimension.
            These are the numbers (:math:`C_j`) such that the curve can be
            written :math:`\sum_{j=0}^n C_j t^j`.

        Notes
        -----
        The coefficients are calculated as

        .. math::

            {n \choose j} \sum_{i=0}^j (-1)^{i+j} {j \choose i} P_i

        where :math:`P_i` are the control points of the curve.
        
   zFPolynomial coefficients formula unstable for high order Bezier curves!r   Nr-   )rX   warningswarnRuntimeWarningrO   r   r	   r   )rG   r   Pjr   Z	prefactorr   r   r   polynomial_coefficients   s   z%BezierSegment.polynomial_coefficientsc           
      C   s   | j }|dkrtg tg fS | j}td|d dddf |dd  }g }g }t|jD ]\}}t|ddd }|| |t	|| q1t
|}t
|}t||dk@ |dk@ }	||	 t||	 fS )a  
        Return the dimension and location of the curve's interior extrema.

        The extrema are the points along the curve where one of its partial
        derivatives is zero.

        Returns
        -------
        dims : array of int
            Index :math:`i` of the partial derivative which is zero at each
            interior extrema.
        dzeros : array of float
            Of same size as dims. The :math:`t` such that :math:`d/dx_i B(t) =
            0`
        r   Nr-   r   )rX   r   Zarrayr_   r	   	enumeraterM   rootsr4   Z	full_likeconcatenateZisrealreal)
rG   r   ZCjZdCjZdimsra   r   pirZin_ranger   r   r   axis_aligned_extrema  s   (


z"BezierSegment.axis_aligned_extremaN)r   r   r   __doc__rP   rR   rT   propertyrO   rW   rX   r_   rf   r   r   r   r   rC      s    		



#rC   c           	      C   s>   t | }|j}t|||d\}}t| || d \}}||fS )ao  
    Split a Bezier curve into two at the intersection with a closed path.

    Parameters
    ----------
    bezier : (N, 2) array-like
        Control points of the Bezier segment. See `.BezierSegment`.
    inside_closedpath : callable
        A function returning True if a given point (x, y) is inside the
        closed path. See also `.find_bezier_t_intersecting_with_closedpath`.
    tolerance : float
        The tolerance for the intersection. See also
        `.find_bezier_t_intersecting_with_closedpath`.

    Returns
    -------
    left, right
        Lists of control points for the two Bezier segments.
    )r?   g       @)rC   rT   rB   r7   )	Zbezierr<   r?   Zbzr;   r=   r>   Z_leftZ_rightr   r   r   )split_bezier_intersecting_with_closedpath5  s   
ri   Fc                 C   s  ddl m} |  }t|\}}||dd }|}	d}
d}|D ]'\}}|}
|t|d 7 }||dd |krEt|	dd |g} n|}	q td|d}t	|||\}}t|dkrj|j
g}|j|j
g}n2t|d	kr|j|jg}|j|j|jg}nt|d
kr|j|j|jg}|j|j|j|jg}ntd|dd }|dd }| jdu r|t| jd| |g}|t|| j|d g}n2|t| jd|
 |gt| jd|
 |g}|t|| j|d gt|| j|d g}|r|s||}}||fS )z`
    Divide a path into two segments at the point where ``inside(x, y)`` becomes
    False.
    r   )PathNr      z*The path does not intersect with the patch)r-   rl         zThis should never be reached)pathrj   Ziter_segmentsnextr5   r   rb   r   Zreshaperi   ZLINETOZMOVETOZCURVE3ZCURVE4AssertionErrorZcodesZvertices)ro   Zinsider?   Zreorder_inoutrj   Z	path_iterZ
ctl_pointsZcommandZbegin_insideZctl_points_oldZioldr   Zbezier_pathZbpleftrightZ
codes_leftZcodes_rightZ
verts_leftZverts_rightZpath_inZpath_outr   r   r   split_path_inoutX  sV   


rt   c                    s   |d  fdd}|S )z
    Return a function that checks whether a point is in a circle with center
    (*cx*, *cy*) and radius *r*.

    The returned function has the signature::

        f(xy: tuple[float, float]) -> bool
    rl   c                    s$   | \}}|  d | d  k S )Nrl   r   )Zxyr#   r$   r'   r(   Zr2r   r   _f  s   zinside_circle.<locals>._fr   )r'   r(   re   rv   r   ru   r   inside_circle  s   	rw   c                 C   sB   ||  || }}|| ||  d }|dkrdS || || fS )Nr:   r   )r&   r&   r   )Zx0Zy0r*   r+   ZdxZdyr"   r   r   r   get_cos_sin  s
   rx   h㈵>c                 C   sJ   t | |}t ||}t|| }||k rdS t|t j |k r#dS dS )a  
    Check if two lines are parallel.

    Parameters
    ----------
    dx1, dy1, dx2, dy2 : float
        The gradients *dy*/*dx* of the two lines.
    tolerance : float
        The angular tolerance in radians up to which the lines are considered
        parallel.

    Returns
    -------
    is_parallel
        - 1 if two lines are parallel in same direction.
        - -1 if two lines are parallel in opposite direction.
        - False otherwise.
    r   r-   F)r   Zarctan2r   rd   )Zdx1Zdy1Zdx2Zdy2r?   Ztheta1Ztheta2Zdthetar   r   r   check_if_parallel  s   rz   c              	   C   sz  | d \}}| d \}}| d \}}t || || || || }|dkr9td t||||\}	}
|	|
}}nt||||\}	}
t||||\}}t|||	|
|\}}}}t|||||\}}}}zt|||	|
||||\}}t|||	|
||||\}}W n# ty   d||  d||  }}d||  d||  }}Y nw ||f||f||fg}||f||f||fg}||fS )z
    Given the quadratic Bezier control points *bezier2*, returns
    control points of quadratic Bezier lines roughly parallel to given
    one separated by *width*.
    r   r   rl   r-   z8Lines do not intersect. A straight line is used instead.r:   )rz   r   Zwarn_externalrx   r,   r%   r   )bezier2widthc1xc1ycmxcmyc2xc2yZparallel_testr   r   r   r   c1x_leftc1y_left	c1x_right	c1y_rightZc2x_leftZc2y_leftZ	c2x_rightZ	c2y_rightZcmx_leftZcmy_leftZ	cmx_rightZ	cmy_right	path_left
path_rightr   r   r   get_parallels  sT   


r   c                 C   s>   dd| | |   }dd| ||   }| |f||f||fgS )z
    Find control points of the Bezier curve passing through (*c1x*, *c1y*),
    (*mmx*, *mmy*), and (*c2x*, *c2y*), at parametric values 0, 0.5, and 1.
    r:   rn   r   )r}   r~   ZmmxZmmyr   r   r   r   r   r   r   find_control_points  s   r   r:   c           %      C   s(  | d \}}| d \}}| d \}	}
t ||||\}}t |||	|
\}}t|||||| \}}}}t|	|
|||| \}}}}|| d || d }}||	 d ||
 d }}|| d || d }}t ||||\}}t|||||| \}} }!}"t|||| ||}#t|||!|"||}$|#|$fS )z
    Being similar to get_parallels, returns control points of two quadratic
    Bezier lines having a width roughly parallel to given one separated by
    *width*.
    r   r   rl   r:   )rx   r,   r   )%r{   r|   Zw1ZwmZw2r}   r~   r   r   Zc3xZc3yr   r   r   r   r   r   r   r   Zc3x_leftZc3y_leftZ	c3x_rightZ	c3y_rightZc12xZc12yZc23xZc23yZc123xZc123yZcos_t123Zsin_t123Z
c123x_leftZ
c123y_leftZc123x_rightZc123y_rightr   r   r   r   r   make_wedged_bezier2#  s0   


r   )r&   r8   r9   )r9   )r9   F)ry   )r8   r:   r&   )rg   	functoolsr   rD   rZ   Znumpyr   Z
matplotlibr   Z	vectorizer   r   r   r%   r,   r0   r7   rB   rC   ri   rt   rw   rx   rz   r   r   r   r   r   r   r   <module>   s6    !
E 

#=
	J
