o
    eGg                     @   s  d dl Z d dlmZmZ d dlmZmZmZmZm	Z	m
Z
mZmZ ddlmZ dZe jdkr1eded	eZd	ed
ZeedrDeded dkrcd dlmZmZmZmZ G dd deZdd Zn
d dlmZ dd ZG dd deZe ZG dd deZ dS )    N)tobytesis_native_int)backendload_libget_raw_bufferget_c_stringnull_pointercreate_string_bufferc_ulongc_size_t   )IntegerBaseaW  typedef unsigned long UNIX_ULONG;
        typedef struct { int a; int b; void *c; } MPZ;
        typedef MPZ mpz_t[1];
        typedef UNIX_ULONG mp_bitcnt_t;
        void __gmpz_init (mpz_t x);
        void __gmpz_init_set (mpz_t rop, const mpz_t op);
        void __gmpz_init_set_ui (mpz_t rop, UNIX_ULONG op);
        UNIX_ULONG __gmpz_get_ui (const mpz_t op);
        void __gmpz_set (mpz_t rop, const mpz_t op);
        void __gmpz_set_ui (mpz_t rop, UNIX_ULONG op);
        void __gmpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_add_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_sub_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_addmul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_submul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_import (mpz_t rop, size_t count, int order, size_t size,
                            int endian, size_t nails, const void *op);
        void * __gmpz_export (void *rop, size_t *countp, int order,
                              size_t size,
                              int endian, size_t nails, const mpz_t op);
        size_t __gmpz_sizeinbase (const mpz_t op, int base);
        void __gmpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_mul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        int __gmpz_cmp (const mpz_t op1, const mpz_t op2);
        void __gmpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const
                          mpz_t mod);
        void __gmpz_powm_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp,
                             const mpz_t mod);
        void __gmpz_pow_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp);
        void __gmpz_sqrt(mpz_t rop, const mpz_t op);
        void __gmpz_mod (mpz_t r, const mpz_t n, const mpz_t d);
        void __gmpz_neg (mpz_t rop, const mpz_t op);
        void __gmpz_abs (mpz_t rop, const mpz_t op);
        void __gmpz_and (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_ior (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_clear (mpz_t x);
        void __gmpz_tdiv_q_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b);
        void __gmpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d);
        void __gmpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2);
        int __gmpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index);
        int __gmpz_perfect_square_p (const mpz_t op);
        int __gmpz_jacobi (const mpz_t a, const mpz_t b);
        void __gmpz_gcd (mpz_t rop, const mpz_t op1, const mpz_t op2);
        UNIX_ULONG __gmpz_gcd_ui (mpz_t rop, const mpz_t op1,
                                     UNIX_ULONG op2);
        void __gmpz_lcm (mpz_t rop, const mpz_t op1, const mpz_t op2);
        int __gmpz_invert (mpz_t rop, const mpz_t op1, const mpz_t op2);
        int __gmpz_divisible_p (const mpz_t n, const mpz_t d);
        int __gmpz_divisible_ui_p (const mpz_t n, UNIX_ULONG d);
        win32zNot using GMP on Windowsgmp)libraryapi__mpir_versionzMPIR library detectedr   ctypes)	Structurec_intc_void_pbyrefc                   @   s"   e Zd ZdefdefdefgZdS )_MPZ	_mp_alloc_mp_size_mp_dN)__name__
__module____qualname__r   r   _fields_ r    r    =/usr/lib/python3/dist-packages/Cryptodome/Math/_IntegerGMP.pyr   n   s
    r   c                   C   s
   t t S N)r   r   r    r    r    r!   new_mpzs      
r#   )ffic                   C   s
   t dS )NzMPZ*)r%   newr    r    r    r!   r#   z   r$   c                   @   s   e Zd Zdd ZdS )_GMPc                 C   s^   | drd|dd   }n| drd|dd   }ntd| tt|}t| || |S )Nmpz___gmpz_   gmp___gmp_zAttribute %s is invalid)
startswithAttributeErrorgetattrlibsetattr)selfname	func_namefuncr    r    r!   __getattr__   s   


z_GMP.__getattr__N)r   r   r   r6   r    r    r    r!   r'      s    r'   c                   @   s  e Zd ZdZe Zeeed dd Z	dd Z
dd Zd	d
 Zdd Zdd ZdlddZedd Zdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" ZeZd#d$ Zd%d& Zd'd( Zd)d* Zd+d, Zd-d. Z dmd0d1Z!dmd2d3Z"d4d5 Z#dmd6d7Z$d8d9 Z%d:d; Z&d<d= Z'd>d? Z(d@dA Z)dBdC Z*dDdE Z+dFdG Z,dHdI Z-dJdK Z.dLdM Z/dNdO Z0dPdQ Z1dRdS Z2dTdU Z3dVdW Z4dXdY Z5dZd[ Z6d\d] Z7d^d_ Z8d`da Z9dbdc Z:ddde Z;edfdg Z<edhdi Z=djdk Z>d/S )n
IntegerGMPz#A fast, arbitrary precision integerr   c                 C   s  t  | _d| _t|trtdd| _t|ryt| j |dkr#dS t  }t| |dk}t	|}|
 d d d }|dkrk|d }t|td||d ? @  t||t|d  t| j| j| |dksA|swt| j| j dS dS t|trt| j|j dS t)	z*Initialize the integer to the given value.Fz-A floating point type is not a natural numberTr   Nr           )r#   _mpz_p_initialized
isinstancefloat
ValueErrorr   _gmpmpz_initabs
bit_length
mpz_set_uir
   mpz_mul_2expmpz_addmpz_negr7   mpz_init_setNotImplementedError)r2   valuetmppositivereduceslotsr    r    r!   __init__   s8   


zIntegerGMP.__init__c                 C   s   t  }t|| j d}d}t|| jdkr<t|d@ }|||d > O }t||td |d }t|| jdks| dk rC| }t	|S )Nr   r9   r8   r   )
r#   r?   rG   r:   mpz_cmp_zero_mpz_p
mpz_get_uimpz_tdiv_q_2expr
   int)r2   rJ   rI   slotlsbr    r    r!   __int__   s   zIntegerGMP.__int__c                 C      t t| S r"   )strrS   r2   r    r    r!   __str__      zIntegerGMP.__str__c                 C   s   dt |  S )NzInteger(%s))rX   rY   r    r    r!   __repr__   r[   zIntegerGMP.__repr__c                 C   rW   r"   )hexrS   rY   r    r    r!   __hex__   r[   zIntegerGMP.__hex__c                 C   s   t | S r"   )rS   rY   r    r    r!   	__index__   s   zIntegerGMP.__index__c              	   C   s   | dk rt dt| jdd d }||  kr dkr!t d t|}t|tdtddtd| j dtd||  t	| S )	a=  Convert the number into a byte string.

        This method encodes the number in network order and prepends
        as many zero bytes as required. It only works for non-negative
        values.

        :Parameters:
          block_size : integer
            The exact size the output byte string must have.
            If zero, the string has the minimal length.
        :Returns:
          A byte string.
        :Raise ValueError:
          If the value is negative or if ``block_size`` is
          provided and the length of the byte string would exceed it.
        r   .Conversion only valid for non-negative numbers         z@Number is too big to convert to byte string of prescribed lengthr       )
r>   r?   mpz_sizeinbaser:   r	   
mpz_exportr   r   maxr   )r2   
block_sizebuf_lenbufr    r    r!   to_bytes   s"   	zIntegerGMP.to_bytesc              	   C   s4   t d}t|jtt| dtddtd|  |S )a   Convert a byte string into a number.

        :Parameters:
          byte_string : byte string
            The input number, encoded in network order.
            It can only be non-negative.
        :Return:
          The ``Integer`` object carrying the same value as the input.
        r   r   )r7   r?   
mpz_importr:   r   len)byte_stringresultr    r    r!   
from_bytes   s   
zIntegerGMP.from_bytesc                 C   s    t |ts	t|}|| j|jS r"   )r<   r7   r:   )r2   r5   termr    r    r!   _apply_and_return  s   
zIntegerGMP._apply_and_returnc                 C   s(   t |tst|sdS | tj|dkS )NFr   r<   r7   r   rr   r?   rO   r2   rq   r    r    r!   __eq__     zIntegerGMP.__eq__c                 C   s(   t |tst|sdS | tj|dkS )NTr   rs   rt   r    r    r!   __ne__  rv   zIntegerGMP.__ne__c                 C   s   |  tj|dk S Nr   rr   r?   rO   rt   r    r    r!   __lt__#     zIntegerGMP.__lt__c                 C   s   |  tj|dkS rx   ry   rt   r    r    r!   __le__&  r{   zIntegerGMP.__le__c                 C   s   |  tj|dkS rx   ry   rt   r    r    r!   __gt__)  r{   zIntegerGMP.__gt__c                 C   s   |  tj|dkS rx   ry   rt   r    r    r!   __ge__,  r{   zIntegerGMP.__ge__c                 C   s   t | j| jdkS rx   r?   rO   r:   rP   rY   r    r    r!   __nonzero__/     zIntegerGMP.__nonzero__c                 C   s   t | j| jdk S rx   r   rY   r    r    r!   is_negative3  r   zIntegerGMP.is_negativec                 C   N   t d}t|t szt |}W n ty   t Y S w t|j| j|j |S rx   )r7   r<   rH   NotImplementedr?   rE   r:   r2   rq   ro   r    r    r!   __add__7     
zIntegerGMP.__add__c                 C   r   rx   )r7   r<   rH   r   r?   mpz_subr:   r   r    r    r!   __sub__C  r   zIntegerGMP.__sub__c                 C   r   rx   )r7   r<   rH   r   r?   mpz_mulr:   r   r    r    r!   __mul__O  r   zIntegerGMP.__mul__c                 C   sN   t |ts	t|}t|j| jdkrtdtd}t|j| j|j |S )Nr   Division by zero)r<   r7   r?   rO   r:   rP   ZeroDivisionError
mpz_fdiv_q)r2   divisorro   r    r    r!   __floordiv__[  s   
zIntegerGMP.__floordiv__c                 C   sb   t |ts	t|}t|j| j}|dkrtd|dk r!tdtd}t|j| j|j |S Nr   r   Modulus must be positive	r<   r7   r?   rO   r:   rP   r   r>   mpz_mod)r2   r   compro   r    r    r!   __mod__g  s   
zIntegerGMP.__mod__Nc                 C   s   |d u r#|dk rt d|dkrt dt| j| jtt| | S t|ts,t|}|s2td|	 r:t dt
|r^|dk rFt d|dk rYt| j| jt||j | S t|}n|	 rft dt| j| j|j|j | S )Nr   zExponent must not be negative   zExponent is too bigr   r      )r>   r?   
mpz_pow_uir:   r
   rS   r<   r7   r   r   r   mpz_powm_uimpz_powm)r2   exponentmodulusr    r    r!   inplace_powv  sF   


zIntegerGMP.inplace_powc                 C   s   t | }|||S r"   )r7   r   )r2   r   r   ro   r    r    r!   __pow__  s   zIntegerGMP.__pow__c                 C   s   t d}t|j| j |S rx   )r7   r?   mpz_absr:   )r2   ro   r    r    r!   __abs__  s   zIntegerGMP.__abs__c                 C   sh   |du r| dk rt dtd}t|j| j |S |dkr"t dt|}t| t| | |}|S )zGReturn the largest Integer that does not
        exceed the square rootNr   zSquare root of negative valuer   )r>   r7   r?   mpz_sqrtr:   rS   _tonelli_shanksr2   r   ro   r    r    r!   sqrt  s   zIntegerGMP.sqrtc                 C      t |r;d|  krdk rn nt| j| jt| | S d|  k r'dk r7n nt| j| jt|  | S t|}t| j| j|j | S Nr   r    )r   r?   
mpz_add_uir:   r
   
mpz_sub_uir7   rE   rt   r    r    r!   __iadd__  &   zIntegerGMP.__iadd__c                 C   r   r   )r   r?   r   r:   r
   r   r7   r   rt   r    r    r!   __isub__  r   zIntegerGMP.__isub__c                 C   s   t |rCd|  krdk rn nt| j| jt| | S d|  k r'dk r?n nt| j| jt|  t| j| j | S t|}t| j| j|j | S r   )r   r?   
mpz_mul_uir:   r
   rF   r7   r   rt   r    r    r!   __imul__  s(   zIntegerGMP.__imul__c                 C   sZ   t |ts	t|}t|j|j}|dkrtd|dk r!tdt| j| j|j | S r   r   )r2   r   r   r    r    r!   __imod__  s   
zIntegerGMP.__imod__c                 C   2   t d}t|t st |}t|j| j|j |S rx   )r7   r<   r?   mpz_andr:   r   r    r    r!   __and__     
zIntegerGMP.__and__c                 C   r   rx   )r7   r<   r?   mpz_iorr:   r   r    r    r!   __or__  r   zIntegerGMP.__or__c                 C   sN   t d}|dk rtd|dkr| dk rdS dS t|j| jtt| |S Nr   znegative shift countr   )r7   r>   r?   rR   r:   r
   rS   r2   posro   r    r    r!   
__rshift__  s   
zIntegerGMP.__rshift__c                 C   sF   |dk rt d|dkr| dk rdS dS t| j| jtt| | S r   )r>   r?   rR   r:   r
   rS   r2   r   r    r    r!   __irshift__  s   
zIntegerGMP.__irshift__c                 C   sJ   t d}d|  krdk std tdt|j| jtt| |S Nr   r   zIncorrect shift count)r7   r>   r?   rD   r:   r
   rS   r   r    r    r!   
__lshift__+  s   
zIntegerGMP.__lshift__c                 C   sB   d|  krdk st d t dt| j| jtt| | S r   )r>   r?   rD   r:   r
   rS   r   r    r    r!   __ilshift__4  s   
zIntegerGMP.__ilshift__c                 C   sF   | dk rt d|dk rt d|dkrdS tt| jtt|S )zPReturn True if the n-th bit is set to 1.
        Bit 0 is the least significant.r   z)no bit representation for negative valuesznegative bit countr   )r>   boolr?   
mpz_tstbitr:   r
   rS   )r2   nr    r    r!   get_bit<  s   

zIntegerGMP.get_bitc                 C   s   t | jddkS )Nr   r   r?   r   r:   rY   r    r    r!   is_oddJ  r{   zIntegerGMP.is_oddc                 C   s   t | jddkS rx   r   rY   r    r    r!   is_evenM  r{   zIntegerGMP.is_evenc                 C   s   | dk rt dt| jdS )z=Return the minimum number of bits that can encode the number.r   r`   ra   )r>   r?   re   r:   rY   r    r    r!   size_in_bitsP  s   zIntegerGMP.size_in_bitsc                 C   s   |   d d d S )z>Return the minimum number of bytes that can encode the number.r   rc   )r   rY   r    r    r!   size_in_bytesW  s   zIntegerGMP.size_in_bytesc                 C   s   t | jdkS rx   )r?   mpz_perfect_square_pr:   rY   r    r    r!   is_perfect_square[  s   zIntegerGMP.is_perfect_squarec                 C   sb   t |r#d|  k rdk rn nt| jt|rtddS t|}t| j|jr/tddS )z3Raise an exception if the small prime is a divisor.r   r   zThe value is compositeN)r   r?   mpz_divisible_ui_pr:   r
   r>   r7   mpz_divisible_p)r2   small_primer    r    r!   fail_if_divisible_by^  s   zIntegerGMP.fail_if_divisible_byc                 C   s   t |ts	t|}t|rDd|  k rdk r&n nt| j|jt| | S d|  k r0dk r@n nt| j|jt|  | S t|}t| j|j|j | S )z/Increment the number by the product of a and b.r   r   r   )	r<   r7   r   r?   mpz_addmul_uir:   r
   mpz_submul_ui
mpz_addmul)r2   abr    r    r!   multiply_accumulatel  s*   
zIntegerGMP.multiply_accumulatec                 C   s&   t |ts	t|}t| j|j | S )z'Set the Integer to have the given value)r<   r7   r?   mpz_setr:   )r2   sourcer    r    r!   set  s   
zIntegerGMP.setc                 C   sf   t |ts	t|}t|j| j}|dkrtd|dk r!tdt| j| j|j}|s1td| S )zCompute the inverse of this number in the ring of
        modulo integers.

        Raise an exception if no inverse exists.
        r   Modulus cannot be zeror   z No inverse value can be computed)	r<   r7   r?   rO   r:   rP   r   r>   
mpz_invert)r2   r   r   ro   r    r    r!   inplace_inverse  s    
zIntegerGMP.inplace_inversec                 C   s   t | }|| |S r"   )r7   r   r   r    r    r!   inverse  s   
zIntegerGMP.inversec                 C   sb   t d}t|r%d|  k rdk r!n nt|j| jt| |S t |}t|j| j|j |S )zUCompute the greatest common denominator between this
        number and another term.r   i  )r7   r   r?   
mpz_gcd_uir:   r
   mpz_gcdr   r    r    r!   gcd  s   zIntegerGMP.gcdc                 C   r   )zQCompute the least common multiplier between this
        number and another term.r   )r7   r<   r?   mpz_lcmr:   r   r    r    r!   lcm  s
   
zIntegerGMP.lcmc                 C   sL   t | ts	t| } t |tst|}|dks| rtdt| j|jS )zCompute the Jacobi symbolr   z-n must be positive even for the Jacobi symbol)r<   r7   r   r>   r?   
mpz_jacobir:   )r   r   r    r    r!   jacobi_symbol  s   

zIntegerGMP.jacobi_symbolc                 C   s   t | ts	t| } t |tst|}t |tst|}|dk r#td|dkr+td|d@ dkr5tdt| }| | | |}|S )Nr   r   r   r   zOdd modulus is required)r<   r7   r>   r   rm   rk   )term1term2r   numbers_lenro   r    r    r!   _mult_modulo_bytes  s   


zIntegerGMP._mult_modulo_bytesc                 C   s>   z| j d ur| jrt| j  d | _ W d S  ty   Y d S w r"   )r:   r;   r?   	mpz_clearr.   rY   r    r    r!   __del__  s   
zIntegerGMP.__del__)r   r"   )?r   r   r   __doc__r#   rP   r?   mpz_init_set_uir
   rN   rV   rZ   r\   r^   r_   rk   staticmethodrp   rr   ru   rw   rz   r|   r}   r~   r   __bool__r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r    r    r!   r7      sx    %
&


'
				


r7   )!sysCryptodome.Util.py3compatr   r   Cryptodome.Util._raw_apir   r   r   r   r   r	   r
   r   _IntegerBaser   gmp_defsplatformImportErrorr0   implementationhasattrr   r   r   r   r   r   r#   r%   objectr'   r?   r7   r    r    r    r!   <module>   s(   (
5



