<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">"""Tools for constructing domains for expressions. """
from math import prod

from sympy.core import sympify
from sympy.core.evalf import pure_complex
from sympy.core.sorting import ordered
from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, EX
from sympy.polys.domains.complexfield import ComplexField
from sympy.polys.domains.realfield import RealField
from sympy.polys.polyoptions import build_options
from sympy.polys.polyutils import parallel_dict_from_basic
from sympy.utilities import public


def _construct_simple(coeffs, opt):
    """Handle simple domains, e.g.: ZZ, QQ, RR and algebraic domains. """
    rationals = floats = complexes = algebraics = False
    float_numbers = []

    if opt.extension is True:
        is_algebraic = lambda coeff: coeff.is_number and coeff.is_algebraic
    else:
        is_algebraic = lambda coeff: False

    for coeff in coeffs:
        if coeff.is_Rational:
            if not coeff.is_Integer:
                rationals = True
        elif coeff.is_Float:
            if algebraics:
                # there are both reals and algebraics -&gt; EX
                return False
            else:
                floats = True
                float_numbers.append(coeff)
        else:
            is_complex = pure_complex(coeff)
            if is_complex:
                complexes = True
                x, y = is_complex
                if x.is_Rational and y.is_Rational:
                    if not (x.is_Integer and y.is_Integer):
                        rationals = True
                    continue
                else:
                    floats = True
                    if x.is_Float:
                        float_numbers.append(x)
                    if y.is_Float:
                        float_numbers.append(y)
            elif is_algebraic(coeff):
                if floats:
                    # there are both algebraics and reals -&gt; EX
                    return False
                algebraics = True
            else:
                # this is a composite domain, e.g. ZZ[X], EX
                return None

    # Use the maximum precision of all coefficients for the RR or CC
    # precision
    max_prec = max(c._prec for c in float_numbers) if float_numbers else 53

    if algebraics:
        domain, result = _construct_algebraic(coeffs, opt)
    else:
        if floats and complexes:
            domain = ComplexField(prec=max_prec)
        elif floats:
            domain = RealField(prec=max_prec)
        elif rationals or opt.field:
            domain = QQ_I if complexes else QQ
        else:
            domain = ZZ_I if complexes else ZZ

        result = [domain.from_sympy(coeff) for coeff in coeffs]

    return domain, result


def _construct_algebraic(coeffs, opt):
    """We know that coefficients are algebraic so construct the extension. """
    from sympy.polys.numberfields import primitive_element

    exts = set()

    def build_trees(args):
        trees = []
        for a in args:
            if a.is_Rational:
                tree = ('Q', QQ.from_sympy(a))
            elif a.is_Add:
                tree = ('+', build_trees(a.args))
            elif a.is_Mul:
                tree = ('*', build_trees(a.args))
            else:
                tree = ('e', a)
                exts.add(a)
            trees.append(tree)
        return trees

    trees = build_trees(coeffs)
    exts = list(ordered(exts))

    g, span, H = primitive_element(exts, ex=True, polys=True)
    root = sum([ s*ext for s, ext in zip(span, exts) ])

    domain, g = QQ.algebraic_field((g, root)), g.rep.rep

    exts_dom = [domain.dtype.from_list(h, g, QQ) for h in H]
    exts_map = dict(zip(exts, exts_dom))

    def convert_tree(tree):
        op, args = tree
        if op == 'Q':
            return domain.dtype.from_list([args], g, QQ)
        elif op == '+':
            return sum((convert_tree(a) for a in args), domain.zero)
        elif op == '*':
            return prod(convert_tree(a) for a in args)
        elif op == 'e':
            return exts_map[args]
        else:
            raise RuntimeError

    result = [convert_tree(tree) for tree in trees]

    return domain, result


def _construct_composite(coeffs, opt):
    """Handle composite domains, e.g.: ZZ[X], QQ[X], ZZ(X), QQ(X). """
    numers, denoms = [], []

    for coeff in coeffs:
        numer, denom = coeff.as_numer_denom()

        numers.append(numer)
        denoms.append(denom)

    polys, gens = parallel_dict_from_basic(numers + denoms)  # XXX: sorting
    if not gens:
        return None

    if opt.composite is None:
        if any(gen.is_number and gen.is_algebraic for gen in gens):
            return None # generators are number-like so lets better use EX

        all_symbols = set()

        for gen in gens:
            symbols = gen.free_symbols

            if all_symbols &amp; symbols:
                return None # there could be algebraic relations between generators
            else:
                all_symbols |= symbols

    n = len(gens)
    k = len(polys)//2

    numers = polys[:k]
    denoms = polys[k:]

    if opt.field:
        fractions = True
    else:
        fractions, zeros = False, (0,)*n

        for denom in denoms:
            if len(denom) &gt; 1 or zeros not in denom:
                fractions = True
                break

    coeffs = set()

    if not fractions:
        for numer, denom in zip(numers, denoms):
            denom = denom[zeros]

            for monom, coeff in numer.items():
                coeff /= denom
                coeffs.add(coeff)
                numer[monom] = coeff
    else:
        for numer, denom in zip(numers, denoms):
            coeffs.update(list(numer.values()))
            coeffs.update(list(denom.values()))

    rationals = floats = complexes = False
    float_numbers = []

    for coeff in coeffs:
        if coeff.is_Rational:
            if not coeff.is_Integer:
                rationals = True
        elif coeff.is_Float:
            floats = True
            float_numbers.append(coeff)
        else:
            is_complex = pure_complex(coeff)
            if is_complex is not None:
                complexes = True
                x, y = is_complex
                if x.is_Rational and y.is_Rational:
                    if not (x.is_Integer and y.is_Integer):
                        rationals = True
                else:
                    floats = True
                    if x.is_Float:
                        float_numbers.append(x)
                    if y.is_Float:
                        float_numbers.append(y)

    max_prec = max(c._prec for c in float_numbers) if float_numbers else 53

    if floats and complexes:
        ground = ComplexField(prec=max_prec)
    elif floats:
        ground = RealField(prec=max_prec)
    elif complexes:
        if rationals:
            ground = QQ_I
        else:
            ground = ZZ_I
    elif rationals:
        ground = QQ
    else:
        ground = ZZ

    result = []

    if not fractions:
        domain = ground.poly_ring(*gens)

        for numer in numers:
            for monom, coeff in numer.items():
                numer[monom] = ground.from_sympy(coeff)

            result.append(domain(numer))
    else:
        domain = ground.frac_field(*gens)

        for numer, denom in zip(numers, denoms):
            for monom, coeff in numer.items():
                numer[monom] = ground.from_sympy(coeff)

            for monom, coeff in denom.items():
                denom[monom] = ground.from_sympy(coeff)

            result.append(domain((numer, denom)))

    return domain, result


def _construct_expression(coeffs, opt):
    """The last resort case, i.e. use the expression domain. """
    domain, result = EX, []

    for coeff in coeffs:
        result.append(domain.from_sympy(coeff))

    return domain, result


@public
def construct_domain(obj, **args):
    """Construct a minimal domain for a list of expressions.

    Explanation
    ===========

    Given a list of normal SymPy expressions (of type :py:class:`~.Expr`)
    ``construct_domain`` will find a minimal :py:class:`~.Domain` that can
    represent those expressions. The expressions will be converted to elements
    of the domain and both the domain and the domain elements are returned.

    Parameters
    ==========

    obj: list or dict
        The expressions to build a domain for.

    **args: keyword arguments
        Options that affect the choice of domain.

    Returns
    =======

    (K, elements): Domain and list of domain elements
        The domain K that can represent the expressions and the list or dict
        of domain elements representing the same expressions as elements of K.

    Examples
    ========

    Given a list of :py:class:`~.Integer` ``construct_domain`` will return the
    domain :ref:`ZZ` and a list of integers as elements of :ref:`ZZ`.

    &gt;&gt;&gt; from sympy import construct_domain, S
    &gt;&gt;&gt; expressions = [S(2), S(3), S(4)]
    &gt;&gt;&gt; K, elements = construct_domain(expressions)
    &gt;&gt;&gt; K
    ZZ
    &gt;&gt;&gt; elements
    [2, 3, 4]
    &gt;&gt;&gt; type(elements[0])  # doctest: +SKIP
    &lt;class 'int'&gt;
    &gt;&gt;&gt; type(expressions[0])
    &lt;class 'sympy.core.numbers.Integer'&gt;

    If there are any :py:class:`~.Rational` then :ref:`QQ` is returned
    instead.

    &gt;&gt;&gt; construct_domain([S(1)/2, S(3)/4])
    (QQ, [1/2, 3/4])

    If there are symbols then a polynomial ring :ref:`K[x]` is returned.

    &gt;&gt;&gt; from sympy import symbols
    &gt;&gt;&gt; x, y = symbols('x, y')
    &gt;&gt;&gt; construct_domain([2*x + 1, S(3)/4])
    (QQ[x], [2*x + 1, 3/4])
    &gt;&gt;&gt; construct_domain([2*x + 1, y])
    (ZZ[x,y], [2*x + 1, y])

    If any symbols appear with negative powers then a rational function field
    :ref:`K(x)` will be returned.

    &gt;&gt;&gt; construct_domain([y/x, x/(1 - y)])
    (ZZ(x,y), [y/x, -x/(y - 1)])

    Irrational algebraic numbers will result in the :ref:`EX` domain by
    default. The keyword argument ``extension=True`` leads to the construction
    of an algebraic number field :ref:`QQ(a)`.

    &gt;&gt;&gt; from sympy import sqrt
    &gt;&gt;&gt; construct_domain([sqrt(2)])
    (EX, [EX(sqrt(2))])
    &gt;&gt;&gt; construct_domain([sqrt(2)], extension=True)  # doctest: +SKIP
    (QQ&lt;sqrt(2)&gt;, [ANP([1, 0], [1, 0, -2], QQ)])

    See also
    ========

    Domain
    Expr
    """
    opt = build_options(args)

    if hasattr(obj, '__iter__'):
        if isinstance(obj, dict):
            if not obj:
                monoms, coeffs = [], []
            else:
                monoms, coeffs = list(zip(*list(obj.items())))
        else:
            coeffs = obj
    else:
        coeffs = [obj]

    coeffs = list(map(sympify, coeffs))
    result = _construct_simple(coeffs, opt)

    if result is not None:
        if result is not False:
            domain, coeffs = result
        else:
            domain, coeffs = _construct_expression(coeffs, opt)
    else:
        if opt.composite is False:
            result = None
        else:
            result = _construct_composite(coeffs, opt)

        if result is not None:
            domain, coeffs = result
        else:
            domain, coeffs = _construct_expression(coeffs, opt)

    if hasattr(obj, '__iter__'):
        if isinstance(obj, dict):
            return domain, dict(list(zip(monoms, coeffs)))
        else:
            return domain, coeffs
    else:
        return domain, coeffs[0]
</pre></body></html>