
    MZd8                         d Z ddlmZmZ ddlmZ ddlmZmZm	Z	m
Z
mZmZmZmZ ddlmZ ddlmZ ddZdd	Zd
 Zd Zd Zd Zd Zy)zl
Convolution (using **FFT**, **NTT**, **FWHT**), Subset Convolution,
Covering Product, Intersecting Product
    )Ssympify)
expand_mul)fftifftnttinttfwhtifwhtmobius_transforminverse_mobius_transform)iterable)as_intNc           	         t        |      }|dk  rt        d      |rdnd}|rdnd}t        d ||||fD              dkD  rt        d      |=t	        | ||      }|s|S t        |      D 	cg c]  }	t        ||	d|         |z   c}	S |rt        | |      }n|rt        | |      }nt        | ||	      }|s|S t        |      D 	cg c]  }	t        ||	d|          c}	S c c}	w c c}	w )
a  
    Performs convolution by determining the type of desired
    convolution using hints.

    Exactly one of ``dps``, ``prime``, ``dyadic``, ``subset`` arguments
    should be specified explicitly for identifying the type of convolution,
    and the argument ``cycle`` can be specified optionally.

    For the default arguments, linear convolution is performed using **FFT**.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.
    cycle : Integer
        Specifies the length for doing cyclic convolution.
    dps : Integer
        Specifies the number of decimal digits for precision for
        performing **FFT** on the sequence.
    prime : Integer
        Prime modulus of the form `(m 2^k + 1)` to be used for
        performing **NTT** on the sequence.
    dyadic : bool
        Identifies the convolution type as dyadic (*bitwise-XOR*)
        convolution, which is performed using **FWHT**.
    subset : bool
        Identifies the convolution type as subset convolution.

    Examples
    ========

    >>> from sympy import convolution, symbols, S, I
    >>> u, v, w, x, y, z = symbols('u v w x y z')

    >>> convolution([1 + 2*I, 4 + 3*I], [S(5)/4, 6], dps=3)
    [1.25 + 2.5*I, 11.0 + 15.8*I, 24.0 + 18.0*I]
    >>> convolution([1, 2, 3], [4, 5, 6], cycle=3)
    [31, 31, 28]

    >>> convolution([111, 777], [888, 444], prime=19*2**10 + 1)
    [1283, 19351, 14219]
    >>> convolution([111, 777], [888, 444], prime=19*2**10 + 1, cycle=2)
    [15502, 19351]

    >>> convolution([u, v], [x, y, z], dyadic=True)
    [u*x + v*y, u*y + v*x, u*z, v*z]
    >>> convolution([u, v], [x, y, z], dyadic=True, cycle=2)
    [u*x + u*z + v*y, u*y + v*x + v*z]

    >>> convolution([u, v, w], [x, y, z], subset=True)
    [u*x, u*y + v*x, u*z + w*x, v*z + w*y]
    >>> convolution([u, v, w], [x, y, z], subset=True, cycle=3)
    [u*x + v*z + w*y, u*y + v*x, u*z + w*x]

    r   z6The length for cyclic convolution must be non-negativeTNc              3   $   K   | ]  }|d u 
 y wN ).0xs     =/usr/lib/python3/dist-packages/sympy/discrete/convolutions.py	<genexpr>zconvolution.<locals>.<genexpr>P   s     
?Q1D=
?s      z0Ambiguity in determining the type of convolution)prime)dps)	r   
ValueErrorsum	TypeErrorconvolution_nttrangeconvolution_fwhtconvolution_subsetconvolution_fft)
abcycler   r   dyadicsubsetclsis
             r   convolutionr+      s   t 	uA1u / 0 	0 TFTF

?5#vv">
??!CJKKQ/rIa I1R1X!6 IIa#	1%Qs+2=E!H=qSADqD]== !J >s   -C#C(c                    | dd |dd }} t        |       t        |      z   dz
  x}}|dkD  r||dz
  z  rd|j                         z  }| t        j                  g|t        |       z
  z  z  } |t        j                  g|t        |      z
  z  z  }t	        | |      t	        ||      }} t        | |      D cg c]  \  }}t        ||z         } }}t        | |      d| } | S c c}}w )a  
    Performs linear convolution using Fast Fourier Transform.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.
    dps : Integer
        Specifies the number of decimal digits for precision.

    Examples
    ========

    >>> from sympy import S, I
    >>> from sympy.discrete.convolutions import convolution_fft

    >>> convolution_fft([2, 3], [4, 5])
    [8, 22, 15]
    >>> convolution_fft([2, 5], [6, 7, 3])
    [12, 44, 41, 15]
    >>> convolution_fft([1 + 2*I, 4 + 3*I], [S(5)/4, 6])
    [5/4 + 5*I/2, 11 + 63*I/4, 24 + 18*I]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Convolution_theorem
    .. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29

    Nr   r      )len
bit_lengthr   Zeror   zipr   r   )r#   r$   r   nmr   ys          r   r"   r"   g   s    B Q41qAFSVOaA1uAEq||~ !&&1s1v:	A!&&1s1v:	Aq#;AsqA%(AY/TQAaC/A/QRaAH 	0s   4C c                    | dd |dd t        |      }}} t        |       t        |      z   dz
  x}}|dkD  r||dz
  z  rd|j                         z  }| dg|t        |       z
  z  z  } |dg|t        |      z
  z  z  }t        | |      t        ||      }} t	        | |      D cg c]  \  }}||z  |z   } }}t        | |      d| } | S c c}}w )a=  
    Performs linear convolution using Number Theoretic Transform.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.
    prime : Integer
        Prime modulus of the form `(m 2^k + 1)` to be used for performing
        **NTT** on the sequence.

    Examples
    ========

    >>> from sympy.discrete.convolutions import convolution_ntt
    >>> convolution_ntt([2, 3], [4, 5], prime=19*2**10 + 1)
    [8, 22, 15]
    >>> convolution_ntt([2, 5], [6, 7, 3], prime=19*2**10 + 1)
    [12, 44, 41, 15]
    >>> convolution_ntt([333, 555], [222, 666], prime=19*2**10 + 1)
    [15555, 14219, 19404]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Convolution_theorem
    .. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29

    Nr   r   r-   )r   r.   r/   r   r1   r	   )r#   r$   r   pr2   r3   r   r4   s           r   r   r      s    @ dAaD&-!qAFSVOaA1uAEq||~ !a#a&j	A!a#a&j	Aq!9c!QiqA AY'TQ1q'A'Q
2AAH 	(s   #C	c                    | r|sg S | dd |dd }} t        t        |       t        |            }||dz
  z  rd|j                         z  }| t        j                  g|t        |       z
  z  z  } |t        j                  g|t        |      z
  z  z  }t        |       t        |      }} t        | |      D cg c]  \  }}t        ||z         } }}t        |       } | S c c}}w )a  
    Performs dyadic (*bitwise-XOR*) convolution using Fast Walsh Hadamard
    Transform.

    The convolution is automatically padded to the right with zeros, as the
    *radix-2 FWHT* requires the number of sample points to be a power of 2.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.

    Examples
    ========

    >>> from sympy import symbols, S, I
    >>> from sympy.discrete.convolutions import convolution_fwht

    >>> u, v, x, y = symbols('u v x y')
    >>> convolution_fwht([u, v], [x, y])
    [u*x + v*y, u*y + v*x]

    >>> convolution_fwht([2, 3], [4, 5])
    [23, 22]
    >>> convolution_fwht([2, 5 + 4*I, 7], [6*I, 7, 3 + 4*I])
    [56 + 68*I, -10 + 30*I, 6 + 50*I, 48 + 32*I]

    >>> convolution_fwht([S(33)/7, S(55)/6, S(7)/4], [S(2)/3, 5])
    [2057/42, 1870/63, 7/6, 35/4]

    References
    ==========

    .. [1] https://www.radioeng.cz/fulltexts/2002/02_03_40_42.pdf
    .. [2] https://en.wikipedia.org/wiki/Hadamard_transform

    Nr   r-   )	maxr.   r/   r   r0   r
   r1   r   r   r#   r$   r2   r   r4   s        r   r    r       s    P A	Q41qACFCFA!a%yq||~ !&&1s1v:	A!&&1s1v:	A7DGqA%(AY/TQAaC/A/aAH 	0   5Cc           
         | r|sg S t        |       rt        |      st        d      | D cg c]  }t        |       } }|D cg c]  }t        |       }}t        t	        |       t	        |            }||dz
  z  rd|j                         z  }| t        j                  g|t	        |       z
  z  z  } |t        j                  g|t	        |      z
  z  z  }t        j                  g|z  }t        |      D ][  }|}|dkD  r0||xx   t        | |   |||z     z        z  cc<   |dz
  |z  }|dkD  r0||xx   t        | |   |||z     z        z  cc<   ] |S c c}w c c}w )a  
    Performs Subset Convolution of given sequences.

    The indices of each argument, considered as bit strings, correspond to
    subsets of a finite set.

    The sequence is automatically padded to the right with zeros, as the
    definition of subset based on bitmasks (indices) requires the size of
    sequence to be a power of 2.

    Parameters
    ==========

    a, b : iterables
        The sequences for which convolution is performed.

    Examples
    ========

    >>> from sympy import symbols, S
    >>> from sympy.discrete.convolutions import convolution_subset
    >>> u, v, x, y, z = symbols('u v x y z')

    >>> convolution_subset([u, v], [x, y])
    [u*x, u*y + v*x]
    >>> convolution_subset([u, v, x], [y, z])
    [u*y, u*z + v*y, x*y, x*z]

    >>> convolution_subset([1, S(2)/3], [3, 4])
    [3, 6]
    >>> convolution_subset([1, 3, S(5)/7], [7])
    [7, 21, 5, 0]

    References
    ==========

    .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf

    z3Expected a sequence of coefficients for convolutionr   r-   r   )
r   r   r   r8   r.   r/   r   r0   r   r   )r#   r$   argr2   r(   masksmasks          r   r!   r!     s_   R A	A;hqkMNN!"###A#!"###A#CFCFA!a%yq||~ !&&1s1v:	A!&&1s1v:	A	

Aa 8aidGz!E(QtEz]":;;GQY$E ai 	
$:ah4:6778 H+ 	$#s   EEc                    | r|sg S | dd |dd }} t        t        |       t        |            }||dz
  z  rd|j                         z  }| t        j                  g|t        |       z
  z  z  } |t        j                  g|t        |      z
  z  z  }t        |       t        |      }} t        | |      D cg c]  \  }}t        ||z         } }}t        |       } | S c c}}w )a  
    Returns the covering product of given sequences.

    The indices of each argument, considered as bit strings, correspond to
    subsets of a finite set.

    The covering product of given sequences is a sequence which contains
    the sum of products of the elements of the given sequences grouped by
    the *bitwise-OR* of the corresponding indices.

    The sequence is automatically padded to the right with zeros, as the
    definition of subset based on bitmasks (indices) requires the size of
    sequence to be a power of 2.

    Parameters
    ==========

    a, b : iterables
        The sequences for which covering product is to be obtained.

    Examples
    ========

    >>> from sympy import symbols, S, I, covering_product
    >>> u, v, x, y, z = symbols('u v x y z')

    >>> covering_product([u, v], [x, y])
    [u*x, u*y + v*x + v*y]
    >>> covering_product([u, v, x], [y, z])
    [u*y, u*z + v*y + v*z, x*y, x*z]

    >>> covering_product([1, S(2)/3], [3, 4 + 5*I])
    [3, 26/3 + 25*I/3]
    >>> covering_product([1, 3, S(5)/7], [7, 8])
    [7, 53, 5, 40/7]

    References
    ==========

    .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf

    Nr   r-   	r8   r.   r/   r   r0   r   r1   r   r   r9   s        r   covering_productrA   e  s    X A	Q41qACFCFA!a%yq||~ !&&1s1v:	A!&&1s1v:	AA 0 3qA%(AY/TQAaC/A/ #AH 	0r:   c                    | r|sg S | dd |dd }} t        t        |       t        |            }||dz
  z  rd|j                         z  }| t        j                  g|t        |       z
  z  z  } |t        j                  g|t        |      z
  z  z  }t        | d      t        |d      }} t        | |      D cg c]  \  }}t        ||z         } }}t        | d      } | S c c}}w )a  
    Returns the intersecting product of given sequences.

    The indices of each argument, considered as bit strings, correspond to
    subsets of a finite set.

    The intersecting product of given sequences is the sequence which
    contains the sum of products of the elements of the given sequences
    grouped by the *bitwise-AND* of the corresponding indices.

    The sequence is automatically padded to the right with zeros, as the
    definition of subset based on bitmasks (indices) requires the size of
    sequence to be a power of 2.

    Parameters
    ==========

    a, b : iterables
        The sequences for which intersecting product is to be obtained.

    Examples
    ========

    >>> from sympy import symbols, S, I, intersecting_product
    >>> u, v, x, y, z = symbols('u v x y z')

    >>> intersecting_product([u, v], [x, y])
    [u*x + u*y + v*x, v*y]
    >>> intersecting_product([u, v, x], [y, z])
    [u*y + u*z + v*y + x*y + x*z, v*z, 0, 0]

    >>> intersecting_product([1, S(2)/3], [3, 4 + 5*I])
    [9 + 5*I, 8/3 + 10*I/3]
    >>> intersecting_product([1, 3, S(5)/7], [7, 8])
    [327/7, 24, 0, 0]

    References
    ==========

    .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf

    Nr   r-   F)r'   r@   r9   s        r   intersecting_productrC     s    X A	Q41qACFCFA!a%yq||~ !&&1s1v:	A!&&1s1v:	AAe,.>q.OqA%(AY/TQAaC/A/ 51AH 	0s   9C#)r   NNNNr   )__doc__
sympy.corer   r   sympy.core.functionr   sympy.discrete.transformsr   r   r   r	   r
   r   r   r   sympy.utilities.iterablesr   sympy.utilities.miscr   r+   r"   r   r    r!   rA   rC   r       r   <module>rK      sT   
 " *0 0 0 / 'O>p/p.n9DDZ=L=rJ   