import math
import typing as t

from envier import En

from ddtrace.internal.logger import get_logger
from ddtrace.internal.utils.formats import parse_tags_str


logger = get_logger(__name__)


def _derive_default_heap_sample_size(heap_config, default_heap_sample_size=1024 * 1024):
    # type: (ProfilingConfig.Heap, int) -> int
    heap_sample_size = heap_config._sample_size
    if heap_sample_size is not None:
        return heap_sample_size

    if not heap_config.enabled:
        return 0

    try:
        from ddtrace.vendor import psutil

        total_mem = psutil.swap_memory().total + psutil.virtual_memory().total
    except Exception:
        logger.warning(
            "Unable to get total memory available, using default value of %d KB",
            default_heap_sample_size / 1024,
            exc_info=True,
        )
        return default_heap_sample_size

    # This is TRACEBACK_ARRAY_MAX_COUNT
    max_samples = 2**16

    return int(max(math.ceil(total_mem / max_samples), default_heap_sample_size))


class ProfilingConfig(En):
    __prefix__ = "dd.profiling"

    enabled = En.v(
        bool,
        "enabled",
        default=False,
        help_type="Boolean",
        help="Enable Datadog profiling when using ``ddtrace-run``",
    )

    agentless = En.v(
        bool,
        "agentless",
        default=False,
        help_type="Boolean",
        help="",
    )

    code_provenance = En.v(
        bool,
        "enable_code_provenance",
        default=True,
        help_type="Boolean",
        help="Whether to enable code provenance",
    )

    endpoint_collection = En.v(
        bool,
        "endpoint_collection_enabled",
        default=True,
        help_type="Boolean",
        help="Whether to enable the endpoint data collection in profiles",
    )

    output_pprof = En.v(
        t.Optional[str],
        "output_pprof",
        default=None,
        help_type="String",
        help="",
    )

    max_events = En.v(
        int,
        "max_events",
        default=16384,
        help_type="Integer",
        help="",
    )

    upload_interval = En.v(
        float,
        "upload_interval",
        default=60.0,
        help_type="Float",
        help="The interval in seconds to wait before flushing out recorded events",
    )

    capture_pct = En.v(
        float,
        "capture_pct",
        default=1.0,
        help_type="Float",
        help="The percentage of events that should be captured (e.g. memory "
        "allocation). Greater values reduce the program execution speed. Must be "
        "greater than 0 lesser or equal to 100",
    )

    max_frames = En.v(
        int,
        "max_frames",
        default=64,
        help_type="Integer",
        help="The maximum number of frames to capture in stack execution tracing",
    )

    ignore_profiler = En.v(
        bool,
        "ignore_profiler",
        default=False,
        help_type="Boolean",
        help="**Deprecated**: whether to ignore the profiler in the generated data",
    )

    max_time_usage_pct = En.v(
        float,
        "max_time_usage_pct",
        default=1.0,
        help_type="Float",
        help="The percentage of maximum time the stack profiler can use when computing "
        "statistics. Must be greater than 0 and lesser or equal to 100",
    )

    api_timeout = En.v(
        float,
        "api_timeout",
        default=10.0,
        help_type="Float",
        help="The timeout in seconds before dropping events if the HTTP API does not reply",
    )

    tags = En.v(
        dict,
        "tags",
        parser=parse_tags_str,
        default={},
        help_type="Mapping",
        help="The tags to apply to uploaded profile. Must be a list in the ``key1:value,key2:value2`` format",
    )

    class Stack(En):
        __item__ = __prefix__ = "stack"

        enabled = En.v(
            bool,
            "enabled",
            default=True,
            help_type="Boolean",
            help="Whether to enable the stack profiler",
        )

        class V2(En):
            __item__ = __prefix__ = "v2"

            enabled = En.v(
                bool,
                "enabled",
                default=False,
                help_type="Boolean",
                help="Whether to enable the v2 stack profiler. Also enables the libdatadog collector.",
            )

    class Lock(En):
        __item__ = __prefix__ = "lock"

        enabled = En.v(
            bool,
            "enabled",
            default=True,
            help_type="Boolean",
            help="Whether to enable the lock profiler",
        )

    class Memory(En):
        __item__ = __prefix__ = "memory"

        enabled = En.v(
            bool,
            "enabled",
            default=True,
            help_type="Boolean",
            help="Whether to enable the memory profiler",
        )

        events_buffer = En.v(
            int,
            "events_buffer",
            default=16,
            help_type="Integer",
            help="",
        )

    class Heap(En):
        __item__ = __prefix__ = "heap"

        enabled = En.v(
            bool,
            "enabled",
            default=True,
            help_type="Boolean",
            help="Whether to enable the heap memory profiler",
        )

        _sample_size = En.v(
            t.Optional[int],
            "sample_size",
            default=None,
            help_type="Integer",
            help="",
        )
        sample_size = En.d(int, _derive_default_heap_sample_size)

    class Export(En):
        __item__ = __prefix__ = "export"

        libdd_enabled = En.v(
            bool,
            "libdd_enabled",
            default=False,
            help_type="Boolean",
            help="Enables collection and export using the experimental exporter",
        )


config = ProfilingConfig()
